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Abstract 

Multilevel modeling allows researchers to understand whether relationships between lower-level 

variables (e.g., individual job satisfaction and individual performance, firm capabilities and 

performance) change as a function of higher-order moderator variables (e.g., leadership climate, 

market-based conditions). We describe how to estimate such cross-level interaction effects and 

distill the technical literature for a general readership of management researchers, including a 

description of the multilevel model building process and an illustration of analyses and results 

with a data set grounded in substantive theory. In addition, we provide 10 specific best-practice 

recommendations regarding persistent and important challenges that researchers face before and 

after data collection to improve the accuracy of substantive conclusions involving cross-level 

interaction effects. Our recommendations provide guidance on how to define the cross-level 

interaction effect, compute statistical power and make research design decisions, test hypotheses 

with various types of moderator variables (e.g., continuous, categorical), re-scale (i.e., center) 

predictors, graph the cross-level interaction effect, interpret interactions given the symmetrical 

nature of such effects, test multiple cross-level interaction hypotheses, test cross-level 

interactions involving more than two levels of nesting, compute effect-size estimates and 

interpret the practical importance of a cross-level interaction effect, and report results regarding 

the multilevel model building process. 

Keywords: multilevel modeling, moderation, cross-level, interaction 
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BEST-PRACTICE RECOMMENDATIONS FOR ESTIMATING CROSS-LEVEL 

INTERACTION EFFECTS USING MULTILEVEL MODELING  

 Integrating micro and macro levels of analysis is one of the biggest challenges in the field 

of management (Aguinis, Boyd, Pierce, & Short, 2011). Specifically, there is an interest in 

integrating theories that explain and predict phenomena at the individual, team, and 

organizational levels of analysis (Bliese, 2000; Kozlowski & Klein, 2000; Liden & Antonakis, 

2009; Mathieu & Chen, 2011; Molloy, Ployhart, & Wright, 2011). When conducting research 

that includes variables measured at different levels of analysis, researchers explicitly recognize 

that lower-level entities such as individuals are nested within higher-level collectives such as 

teams. Note that lower-level entities do not have to be individuals. For example, lower-level 

entities can be organizations and higher-level collectives can be industries, countries, or 

economic blocks (e.g., MERCOSUR, European Union). Regardless of the specific definition of 

entities and the collectives within which they reside, the multilevel nature of the resulting data 

requires that dependence among observations be considered both conceptually and analytically 

(Snijders & Bosker, 2012). Of particular interest in terms of integrating micro and macro 

domains is whether the nature of a lower-level relationship depends on a higher-level factor—

what we label a cross-level interaction effect. Conceptually, there is a need to consider 

theoretical reasons for expecting a cross-level interaction effect and, analytically, the resulting 

data should be examined using appropriate tools.  

Dependence is not solely a function of whether observations are formally clustered into 

larger units. As noted by Kenny and Judd (1996: 138), “observations may be dependent, for 

instance, because they share some common feature, come from some common source, are 

affected by social interaction, or are arranged spatially or sequentially in time.” Thus, 
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dependence of observations also occurs when shared experiences and context affect lower-level 

units such as firms in the same industry facing similar market-based challenges, different 

branches of a bank being influenced by the same strategic priorities established for a particular 

geographic region, or employees within a team being similarly affected by the ineffective 

communication style of their supervisor. In other words, a higher-level variable may covary with 

relevant lower-level outcome variables, and entities within collectives may be more similar 

regarding certain variables compared to entities across collectives (Bliese & Hanges, 2004). 

Consequently, dependence may occur “even if the variable of interest makes no reference to the 

group” (Bliese, 2000: 358). Covariation between higher-level variables and lower-level 

outcomes leads to gross errors of prediction if a researcher uses statistical approaches such as 

ordinary least squares (OLS) regression, which are not designed to model data structures that 

include dependence due to clustering of entities (Bliese & Hanges, 2004; Hox, 2010; Snijders & 

Bosker, 2012). 

Although moderated multiple regression (MMR) is arguably the most popular data-

analytic approach for estimating interaction effects in management and related fields (Aguinis, 

Beaty, Boik, & Pierce, 2005), it is highly impractical in the presence of nested data structures 

(Davison, Kwak, Seo, & Choi, 2002). Moreover, although MMR could be used to understand 

whether situations conceptualized as categorical groupings or conditions interact with lower-

level predictors, MMR forces the situation to be conceptualized as categorical differences (or 

“treatments”). Alternatively, a multilevel analytical approach allows for an investigation of 

influences, both direct and interactive, of continuous higher-level variables on lower-level 

outcomes (Mathieu, Aguinis, Culpepper, & Chen, 2012). So, multilevel modeling offers a 
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practical as well as substantive advantage regarding the estimation of cross-level interaction 

effects compared to MMR. 

Much of the literature on multilevel modeling is quite specialized, including analytic 

work that is mathematically sophisticated as well as Monte Carlo simulations involving lengthy 

and complex procedures and results. Due to the nature of this research, much of this work is not 

easily accessible to researchers with the usual methodological and statistical background 

obtained from doctoral-level training in management and related fields. Accordingly, our article 

distills the technical literature for a general readership and includes 10 specific best-practice 

recommendations that researchers will be able to implement in their own quest for interaction 

effects involving variables at different levels of analysis. Our article makes a dual contribution. 

First, it offers a “one-stop-shopping experience” regarding multilevel modeling analysis in 

general and, second, it also offers specific recommendations regarding the test and interpretation 

of cross-level interactions in particular. Regarding our article’s first contribution, we rely on 

several excellent books available (e.g., Hox, 2010; Kreft & De Leeuw, 1998; Raudenbush & 

Bryk, 2002; Snijders & Bosker, 2012), but we provide quicker access to useful recommendations 

and tools, specific examples and actionable pointers, and a less technical treatment that, taken 

together, make the material accessible to a wider audience of researchers in management and 

related fields. 

Next, we provide a conceptual and technical description of the steps involved in 

estimating cross-level interaction effects. The technical aspects of our presentation are necessary 

because they provide the foundation for the best-practice recommendations we will offer in the 

following section. Although some of the material in the next section involves formulae with 

which some readers may not be very familiar, we provide an explanation of each and also 
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accompany them with illustrations based on a realistic research situation. Moreover, we also 

offer graphs to enhance the pedagogical value of the technical material.  

ESTIMATING CROSS-LEVEL INTERACTION EFFECTS USING 

MULTILEVEL MODELING 

 We created a data file including N = 630 individuals nested in J = 105 teams patterned 

after a study by Chen, Kirkman, Kanfer, Allen, and Rosen (2007) to provide a realistic scenario 

grounded in substantive theory. Specifically, Chen et al. (2007) investigated whether the quality 

of leader-member exchange (LMX) (X) predicts individual empowerment (Y) given data 

collected across teams that differ regarding leadership climate (W) and all three variables were 

measured using 7-point Likert type scales. Overall, Chen et al.’s theoretical model predicted that 

employees who report higher LMX (i.e., a better relationship with their leader) will feel more 

empowered (i.e., they have the autonomy and capability to perform meaningful work that can 

impact their organization). In addition, Chen et al.’s model included the hypothesis that the team-

level variable leadership climate (i.e., ambient leadership behaviors directed at the team as a 

whole) would also affect individual-level empowerment positively. Moreover, Chen et al. 

hypothesized that the relationship between LMX and empowerment would be moderated by 

leadership climate such that the relationship would be stronger for teams with a better leadership 

climate. The data file and the annotated R code used to conduct all the analyses described in our 

article are available at http://mypage.iu.edu/~haguinis. The annotated R code is also included in 

Appendix A. The availability of the data file and R code will allow readers to replicate the 

illustrative analyses and results we describe throughout our article. 

In the context of multilevel modeling, it is possible to test hypotheses regarding three 

types of relationships or effects (note that for ease of presentation we use the term “effect” in the 
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remainder of our article although in some studies causal relationships may not be clearly 

established due to the use of non-experimental designs):  

1. Lower-level direct effects. Does a lower-level predictor X (i.e., Level 1 or L1 predictor) 

have an effect on a lower-level outcome variable Y (i.e., L1 outcome)? Specifically 

regarding our illustration, there is an interest in testing whether LMX, as perceived by 

subordinates, predicts individual empowerment. Note that LMX scores are collected for 

each individual worker (i.e., there is no aggregation of such scores for the purpose of 

testing the presence of a lower-level direct effect). 

2. Cross-level direct effects. Does a higher-level predictor W (i.e., Level 2 or L2 predictor) 

have an effect on an L1 outcome variable Y? Specifically, we would like to assess 

whether L2 variable leadership climate predicts L1 outcome individual empowerment. 

3. Cross-level interaction effects. Does the nature or strength of the relationship between 

two lower-level variables (e.g., L1 predictor X and L1 outcome Y) change as a function of 

a higher-level variable W? Referring back to our substantive illustration, we are interested 

in testing the hypothesis that the relationship between LMX and individual empowerment 

may vary as a function of (i.e., is moderated by) the degree of leadership climate such 

that the relationship will be stronger for teams with more positive leadership climate and 

weaker for teams with less positive leadership climate.  

Although our article’s specific goal is to discuss issues about cross-level interaction 

effects, as noted above, researchers using multilevel modeling are usually interested in assessing 

other effects as well. Overall, there is an interest in understanding factors that may explain three 

key sources of variance which parallel the three types of effects we just described: (1) what are 

the L1 factors that explain within-group variance (i.e., lower-level direct effects)? (2) what are 
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the L2 factors that explain across-group variance in intercepts (i.e., cross-level direct effects)? 

and (3) what are the group-level factors that explain variance in across-group slopes (i.e., cross-

level interaction effects)? These same three questions are the focus of multilevel analyses 

regardless of the nature of the constructs and the particular measurement approach adopted to 

measure them (e.g., multiple-indicator measures, multidimensional constructs; Preacher, Zyphur, 

& Zhang, 2010). 

To enhance the clarity of our presentation, we offer a visual representation of these three 

sources of variance—we will provide a more detailed analytic treatment after the graphical 

descriptions. The dashed lines in Figure 1’s top and bottom panels show that we can estimate an 

OLS regression equation for the relationship between LMX and empowerment within each team. 

Thus, each team has its own regression line defined by its own intercept and slope. Figure 1’s 

panels also show a solid line, which is a pooled regression line between LMX scores and 

empowerment across all teams. This pooled regression line is defined by its own intercept (i.e., 

 Figure 1’s Panel (a) .(”ଵ଴; “gamma sub one zeroߛ ,.i.e) ଴଴; “gamma sub zero zero”) and slopeߛ

also shows that regression lines differ across teams in terms of both intercepts and slopes. As 

shown in Figure 1’s Panel (a), the variance of intercepts across teams is denoted by ߬଴଴ (“tau sub 

zero zero) and the variance of slopes across teams is denoted by ߬ଵଵ (“tau sub one one”). In 

contrast, illustrating a different yet possible research scenario, Figure 1’s Panel (b) shows that 

teams differ regarding slopes (i.e., ߬ଵଵ > 0), but not regarding intercepts (i.e., ߬଴଴ = 0). 

----------------------------------- 

Insert Figure 1 about here 

----------------------------------- 

Figure 2 includes a graphic depiction of individual data points within two teams only: 
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Team 1 in Panel (a) and Team 2 in Panel (b). Figure 2’s Panel (c) shows data for all individuals 

from both of these teams combined. Similar to Figure 1, Figure 2’s Panel (a) shows the OLS 

regression line for Team 1 (dashed line) as well as the pooled regression line for all teams (solid 

line). Also, Panel (a) shows the L1 residual or error scores ݎ௜ଵ (i.e., differences between observed 

and predicted score for empowerment based on LMX scores within Team 1). Note that the 

variance of these residual scores within teams is symbolized by ߪଶ in Figure 2’s Panel (c). 

Figure 2’s Panel (a) also shows the difference between the Team 1 intercept and the pooled 

(across all teams) intercept ߛ଴଴ (i.e., L2 residual), which is symbolized by ݑ଴ଵ. In addition, Panel 

(a) shows the difference between the Team 1 slope and the pooled (across all teams) slope ߛଵ଴ 

(i.e., L2 residual), which is symbolized by ݑଵଵ. That is, ݑଵଵ is nonzero when Team 1’s prediction 

equation has a different slope than the pooled line. Similarly, Panel (b) also shows the OLS 

regression line for this particular team, the pooled regression line (across all teams), and the L1 

and L2 residuals.  

----------------------------------- 

Insert Figure 2 about here 

----------------------------------- 

Panel (c) in Figure 2 shows individuals from Team 1 and Team 2 combined. For clarity, 

this panel includes only Team 1 and Team 2 from the many teams in Figure 1. This panel shows 

the key sources of variance that we are interested in understanding using multilevel modeling: 

variance of the L1 residuals ݎ௜௝ (i.e., ߪଶ, within-group variance), variance of the L2 residuals ݑ଴௝ 

(i.e., ߬଴଴, intercept variance across teams), and variance of the L2 residuals ݑଵ௝ (i.e., ߬ଵଵ, slope 

variance across teams). 

Analytically, Figure 2’s Panel (c) can be described by the following L1 model 
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(Raudenbush & Bryk, 2002; Singer, 1998): 

    ௜ܻ௝ ൌ ଴௝ߚ ൅ ଵ௝൫ߚ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝.    (1)ݎ

Equation 1 takes on the familiar OLS regression equation form because it includes a 

predictor and a criterion residing at the same level of analysis (i.e., L1 in this case). Specifically, 

௜ܻ௝ is the predicted empowerment score for the ith person in team j, ߚ଴௝  is the intercept parameter 

for team j, ߚଵ௝ is the slope parameter for team j, ௜ܺ௝ is the individual LMX for the ith person in 

team j and is re-scaled (i.e., “centered”) by the team average തܺ௝. As discussed later in our article, 

this type of re-scaling, called “group mean-centering” or “within-cluster centering,” is one of two 

approaches available. The term ݎ௜௝�is the L1 residual term (i.e., randomly distributed error), 

reflecting individual-level differences in empowerment around the predicted empowerment score 

for employees within each team. As mentioned earlier, our interest does not focus on the residual 

scores per se, but in the variance of ݎ௜௝, denoted byߪ�ଶ, which represents the amount of within-

group variance for the criterion scores (i.e., individual empowerment). Note that ߪଶ is analogous 

to MSwithin in analysis of variance (ANOVA) and, as discussed earlier, it is illustrated graphically 

in Figure 2’s Panel (c). 

The interpretation of the parameterߚ�଴௝ depends on the scaling of the predictor ௜ܺ௝. To 

establish a meaningful interpretation of this parameter, Equation 1 re-scales the predictor by each 

team mean. Consequently, the mean of ௜ܺ௝ െ തܺ௝ is zero within teams and ߚ଴௝�is interpreted as the 

predicted level of empowerment for a typical (i.e., mean) LMX of members of a given team. 

Note that instead of re-scaling by the group mean, we could re-scale ௜ܺ௝ by any other value for 

LMX, say 4.5 on a 5-point scale. So, if we re-scale by 4.5, ߚ଴௝�would be interpreted as the 

predicted level of empowerment for individuals in a given team with a team average LMX score 

of 4.5. Finally, based on Equation 1, the parameter ߚଵ௝�is interpreted as the predicted increase in 
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individual empowerment associated with a 1-unit increase in LMX for individuals within the jth 

team. 

The multilevel model building process usually involves a sequence including four steps. 

The first step involves what is labeled an unconditional means, one-way random-effects ANOVA, 

or null model. The second step involves what is called a random intercept and fixed slope model. 

The third step involves the random intercept and slope model. Finally, the fourth step involves 

the cross-level interaction model. Although our best-practice recommendations are particularly 

relevant to the third and fourth steps, next we provide a description of each of the steps involved 

in the model building process. 

Step 1: Null Model 

The null model begins with specifying the following relationship: 

Null model (Level 1): ௜ܻ௝ ൌ ଴௝ߚ ൅  ௜௝ ,    (2)ݎ

which is identical to Equation 1 but excludes the L1 predictor. Due to the nested nature of the 

data, it is possible that both the intercept and slope in Equation 1 vary across teams. Specifically, 

it is likely that teams differ in average empowerment (i.e., ߚ଴௝ differs across the J teams) and 

individual team members’ LMX levels may relate differently to empowerment across teams (i.e., 

 ଵ௝�differs across the J teams). This situation is illustrated in Panel (a) of Figure 1. However, inߚ

this first step in the model building process, we omit predictors and only allow intercepts to vary 

across teams. Formally stated,  

  Null model (Level 2): ߚ଴௝ ൌ ଴଴ߛ ൅  ଴௝    (3)ݑ

In Equation 3, the team intercepts are shown to be a function of the grand mean (i.e., 

averaged across all teams) intercept ߛ଴଴ and a residual term ݑ଴௝ that describes how team 

intercepts deviate from the grand mean intercept. Substituting Equation 3 into Equation 2 leads 
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to the following combined model: 

Null model (Combined):� ௜ܻ௝ ൌ ଴଴ߛ ൅ ଴௝ݑ ൅   ௜௝   (4)ݎ

Referring back to our substantive illustration, the combined null model in Equation 4 

shows that individual empowerment is a function of the grand mean LMX (i.e., ߛ଴଴ሻǡ�across-

group differences in individual empowerment scores (i.e., L2 residuals ݑ଴௝ሻ, and within-group 

differences in individual empowerment scores (i.e., L1 residuals ݎ௜௝). As noted earlier, the 

variance of ݑ଴௝, denoted by ߬଴଴, quantifies the degree of heterogeneity in intercepts across teams 

and the variance of ݎ௜௝, denoted by ߪଶ, quantifies the within-group variance. Thus, in comparison 

to an ANOVA framework, ߪଶ is analogous to MSwithin and ߬଴଴ is analogous to MSbetween. In terms 

of our illustration, ߬଴଴ quantifies the variation in mean empowerment scores across teams. A key 

difference between ANOVA and multilevel modeling, however, is that multilevel modeling 

conceptualizes the teams as a random sample from a larger population of teams (i.e., a random 

factor), whereas ANOVA conceptualizes the teams as being qualitatively different (i.e., a fixed 

factor). Furthermore, as we will reiterate later in our article, the label fixed effects is reserved for 

multilevel modeling estimates that are constant across L2 units, such as ߛ଴଴, and the label 

random effects is used to denote the model estimates that vary across L2 units (e.g., ݑ଴௝). 

As part of the first step in the model building process, we compute the intraclass 

correlation (ICC), which quantifies the proportion of the total variation in individual 

empowerment accounted for by team differences. An alternative interpretation is that the ICC is 

the expected correlation between empowerment scores for two individuals who are in the same 

team. ICC = ߬଴଴Ȁሾ߬଴଴ ൅  ଶሿ and it ranges from 0 to 1. A value near zero suggests that a modelߪ

including L1 variables only is appropriate and, hence, there may be no need to use multilevel 

modeling. Instead, a simpler OLS regression approach may be more parsimonious. On the other 

EP-G
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hand, ICC > 0, even as small as .10 (Kahn, 2011), suggests that there may be a L2 variable W 

(e.g., leadership climate) that explains heterogeneity of empowerment scores across teams (i.e., 

 ଴௝). Moreover, OLS standard errors and significance tests may be compromised in the presenceߚ

of even smaller ICCs. Based on a review of articles published in Journal of Applied Psychology 

between 2000 and 2010, Mathieu et al. (2012) found that ICC values reported in multilevel 

studies usually range from .15 to .30. Similarly, based on the educational literature, Hedges and 

Hedberg (2007) concluded that ICC values typically range from .10 and .25 and, based on the 

school psychology literature, Peugh (2010) reported a range of ICCs from .05 to .20. These 

results may be indicative that higher-level influences are more common than typically assumed, 

or even considered, in management research (Liden & Antonakis, 2009).  

We conducted analyses pertaining to the first step in the model building process using our 

illustrative data file. Results included in Table 1 indicate that ICC = .101, which means that 

differences across teams account for about 10% of the variability in individuals’ empowerment 

levels. As shown in Table 1, the across-team variance in individual empowerment is ߬଴଴= .095 

and the within-team variance is .714. In short, results provide evidence for a nested data structure 

that requires multilevel modeling rather than a single-level data analytic approach. Table 1 also 

shows additional results pertaining to the combined null model. We will describe the 

interpretation of all of the results included in Table 1 in subsequent sections of our article. 

----------------------------------- 

Insert Table 1 about here 

----------------------------------- 

Step 2: Random Intercept and Fixed Slope Model 

As a second step in the model building process, we may be interested in understanding 

EP-G


EP-G
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the factors that explain ߪଶ and ߬଴଴. This second step involves creating what is labeled a random 

intercept and fixed slope model (RIFSM) which begins with the following equation:  

RIFSM (Level 1): ௜ܻ௝ ൌ ଴௝ߚ ൅ ଵ௝൫ߚ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝,    (5)ݎ

which is identical to Equation 1. The next step in the process of building the random intercept 

and fixed slope model involves adding the L2 equations as follows (Enders & Tofighi, 2007; 

Hofmann & Gavin, 1998):1 

  RIFSM (Level 2): ߚ଴௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅  ଴௝,   (6)ݑ

where the team intercepts are shown to be a function of the grand mean (i.e., averaged across all 

teams) intercept ߛ଴଴ and a residual term ݑ଴௝ that describes how teams deviate from the grand 

mean, after controlling for team leadership. Also, ߛ଴ଵ�is interpreted as the amount of change in a 

team’s average empowerment score associated with a 1-unit increase in leadership climate. In 

this model the slopes are not allowed to vary across teams and, hence,  

RIFSM (Level 2): ߚଵ௝ ൌ  ଵ଴,        (7)ߛ

which leads to the following combined model: 

RIFSM (Combined): ௜ܻ௝ ൌ ଴଴ߛ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅  ௜௝  (8)ݎ�଴௝൅ݑ

Note that Equation 8 is called a random intercept and fixed slope model because it allows 

intercepts (i.e., mean scores) to vary across teams by the inclusion of ݑ଴௝. However, as shown in 

Equation 7, slopes are not allowed to vary across teams. Rather, as shown in Equation 8, one 

fixed value for the slope of empowerment on LMX scores (i.e., ߛଵ଴ሻ is used for all individuals 

regardless of team membership. In other words, the relationship between LMX and 

empowerment is assumed to be identical across all teams (similar to the assumption in 

ANCOVA; Culpepper & Aguinis, 2011). In sum, Equation 8 predicts individual empowerment 

scores based on a common intercept ߛ଴଴, individual LMX scores (L1 predictor) reflected by the 
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coefficient ߛଵ଴, and leadership climate (L2 predictor) reflected by the coefficientߛ�଴ଵ. In other 

words, ߛ଴ଵ assesses the possible presence of a cross-level direct effect (i.e., effect of leadership 

climate on individual empowerment) controlling for individual-level LMX scores and, therefore, 

explains at least part of ߬଴଴ identified in the first step of the model building process. 

In Equation 8, ߛ଴଴ represents mean empowerment for a team with a leadership climate 

score at the mean� ഥܹ  ଴ଵ�is the amount of change in a team’s average empowerment scoreߛ ,

associated with a 1-unit increase in leadership climate, and ݑ଴௝ is a residual term (i.e., errors) in 

predicting teams’ average empowerment after controlling for L2 variable leadership climate. 

Note that ௝ܹ is re-scaled by the average team leadership climate ( ഥܹ ) to interpret ߛ଴଴ in reference 

to ഥܹ . As was the case in Equation 1, we can re-scale ௝ܹ using other values, which would lead to 

a different interpretation for ߛ଴଴. In our particular situation, ߛ଴ଵ is the predicted slope for 

regressing empowerment on leadership climate for teams with a mean leadership climate score 

of ഥܹ .  

Once again, we used our illustrative data file and the annotated R code to produce results 

pertaining to this second step in the model building process. Note that the data file includes the 

raw (i.e., original) as well as re-scaled (i.e., centered) scores. As described earlier, we used re-

scaled scores for our analyses. As shown in Table 1, results indicate that mean empowerment for 

a team with a leadership climate score at the mean� ഥܹ  is ߛ଴଴ = 5.72. Table 1 also shows that a 1-

unit increase in leadership climate is associated with a ߛ଴ଵ�= .351 increase in a team’s average 

empowerment score. Also, Table 1 shows that the predicted slope regressing empowerment on 

LMX is ߛଵ଴ = .279. In short, results provide evidence in support of a direct single-level effect 

(i.e., individual LMX on individual empowerment) as well as a direct cross-level effect (i.e., 

team-level leadership climate on individual-level empowerment). 
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Step 3: Random Intercept and Random Slope Model 

As a third step in the model building process, we are interested in understanding whether 

the third key source of variance, the variance of slopes across groups (i.e., ߬ଵଵ), is different from 

zero. In other words, we would like to answer the question of whether the relationship between 

LMX scores and empowerment varies across teams. There is no point in examining which 

particular moderators may explain slope variance across teams if such variance is non-existent. 

To do so, we build a random intercept and random slope model (RIRSM) that adds a random 

slope component so that ߚଵ௝ is allowed to vary across teams.  

First, as usual, we begin the model building process with the L1 equation (identical to 

Equation 1):  

RIRSM (Level 1):� ௜ܻ௝ ൌ ଴௝ߚ ൅ ଵ௝൫ߚ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝.     (9)ݎ

Then, we allow both intercepts and slopes to vary across teams as follows: 

     RIRSM (Level 2):ߚ�଴௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅  ଴௝�    (10)ݑ

    RIRSM (Level 2):ߚ�ଵ௝ ൌ ଵ଴ߛ ൅  ଵ௝Ǥ�      (11)ݑ

In Equation 11, the slope of empowerment on LMX scores is a function of the grand 

mean (i.e., estimated across all teams) slope ߛଵ଴ and a residual term ݑଵ௝ that describes how team 

slopes differ from the pooled slope across teams. Substituting Equations 10 and 11 into Equation 

9 yields the combined random intercept and random slope model as follows: 

RIRSM (Combined):  

 ௜ܻ௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଴௝ݑ ൅ ଵ௝൫ݑ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝ (12)ݎ

A comparison of the combined random intercept and fixed slope model (Equation 8) with 

the random intercept and random slope model (Equation 12) seems to suggest that the only 

difference is that in the latter we allow the slope of empowerment on LMX to vary across teams 
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by the inclusion of ݑଵ௝ and its variance ߬ଵଵ. However, there is one additional parameter estimate 

that is not explicit in the model: The covariance between intercepts and slopes, which is denoted 

by ߬଴ଵǤ Thus, the random intercept and random slope model includes two parameters that are not 

part of the random intercept and fixed slope model: ߬ଵଵ and ߬଴ଵ. Referring back to our 

substantive illustration, a positive value of ߬଴ଵ means that teams with steeper slopes (i.e., 

stronger relationship) of empowerment on LMX tend to have higher team empowerment levels.  

Based on Equation 12, we can examine the standard error estimate, which is standard 

output in most software packages such as HLM and SAS, to answer the question of whether the 

variance of the residuals ݑଵ௝ (i.e., ߬ଵଵ) is non-zero (Bliese, 2002). Specifically, the output file in 

some software packages includes a confidence interval, computed based on the standard error, 

for the estimate of ߬ଵଵ. If the lower bound does not include zero, then we conclude that the slope 

of empowerment on LMX scores varies across teams. However, in spite of its availability in 

many software packages, creating a confidence interval around ߬ଵଵ can lead to incorrect 

conclusions. There are two reasons for this. First, standard errors for the variance components of 

the model, such as ߬ଵଵ, are usually inaccurate. As concluded by Maas and Hox (2004: 437) based 

on an extensive simulation study, “The estimates of the variances are unbiased, but the standard 

errors are not always accurate.” Second, a confidence interval is created by adding and 

subtracting the same value, such as 1.96 for a 95% interval and, therefore, the assumption is that 

the parameter estimate is normally distributed, which is “doubtful for estimated variances; for 

example, because these are necessarily nonnegative” (Snijders & Bosker, 2012: 100). 

Accordingly, a better alternative for creating a confidence interval around ߬ଵଵ is to implement a 

nonparametric residual bootstrap procedure as described by Carpenter, Goldstein, and Rasbash 

(2003). Our recommendation regarding the use of this type of confidence interval is also 
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supported by theoretical evidence regarding its accuracy as described by Field and Welsh (2007). 

A second option in terms of understanding whether ߬ଵଵ is different from zero is to 

compute a -2 log likelihood ratio between Equation 12 (i.e., model with a random slope 

component) and Equation 8 (i.e., model without a random slope component) (Bliese, 2002). A 

log-likelihood value quantifies the probability that the model being estimated produced the 

sample data (Peugh, 2010). Multiplying the log likelihood value by -2 yields a value labeled 

“deviance,” which can be used to compare the relative fit of two competing models. Note that, 

when full information maximum likelihood (FIML) is used, the deviance value shows how well 

the variance-covariance estimates (i.e., ߬଴଴, ߬଴ଵ, and ߬ଵଵ) and the regression coefficients fit the 

sample data. However, when restricted maximum likelihood (REML) is used, the deviance value 

shows how well only the variance estimates fit the data and the regression coefficients play no 

role in this computation (Peugh, 2010). So, either FIML or REML can be used to assess whether 

߬ଵଵ is non-zero, but FIML should be used if there is an interest in comparing models regarding 

coefficients in addition to variance components.  

Referring back to our particular illustration, we implemented the nonparametric bootstrap 

procedure using our data and including 1,500 replications (i.e., 1,500 samples from our data with 

replacement). The annotated R code included in Appendix A incorporates the relevant command 

lines. Results indicated that the 95% bootstrap confidence interval for ߬ଵଵ excludes zero and 

ranges from .004 to .046. Also, results shown in Table 1 indicate that, based on FIML, the model 

at Step 3 fits the data better than the model at Step 2, also suggesting a non-zero ߬ଵଵ (i.e., 

deviance of 1,469; p < .05). For the sake of completeness, Table 1 also includes deviance 

statistics comparing the model at Step 2 with the one at Step 1 (i.e., deviance of 1,478; p < .01), 

and the model at Step 4 compared to the model at Step 3 (i.e., deviance of 1,462; p < .01). We 
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also computed deviance statistics using REML. As expected, values become smaller (i.e., better 

fit) as we progress through the models shown in Table 1 and are as follows: 1,641, 1,492, 1,483, 

and 1,481. Also as expected, the deviance statistics are overall larger (i.e., worse fit) compared to 

FIML because REML estimates compute fit based on differences in variance components only. 

Note that each of the aforementioned tests regarding the hypothesis that ߬ଵଵ is zero relies 

on null hypothesis significance testing. Thus, like all such tests of significance, statistical power 

is an important consideration. In other words, to be informative, such tests need to have 

sufficient levels of power so as to be able to detect an existing non-zero value of ߬ଵଵ in the 

population. Tests regarding ߬ଵଵ rely on degrees of freedom determined by the number of L2 units 

(e.g., teams), which is usually much smaller than a study’s total sample size regarding lower-

level units (e.g., individual employees). For example, Dalton, Aguinis, Dalton, Bosco, and 

Pierce’s (2012) Study 1 included a review of articles published in Journal of Applied 

Psychology, Personnel Psychology, and Academy of Management Journal and reported median 

L1 sample sizes of 198, 204, and 161, respectively. In contrast, a review by Mathieu et al. (2012) 

including 79 multilevel investigations published in the Journal of Applied Psychology between 

2000 and 2010 indicated that the median L2 sample size was only 51. Given that most same-

level research relying on degrees of freedom based on total sample size is notoriously 

underpowered (Aguinis et al., 2005; Maxwell, 2004) and that multilevel modeling is usually 

conducted with L2 sample sizes that are much smaller, we anticipate that many tests regarding 

߬ଵଵ may also be underpowered. In other words, it is possible that in many situations there may be 

an incorrect conclusion that ߬ଵଵ is not different from zero due to insufficient statistical power. As 

noted by an anonymous reviewer, the default position should be that if ߬ଵଵ is not found to be 

different from zero, then one should not proceed with tests for possible specific cross-level 
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interaction effects. However, to balance Type I and Type II error considerations, our 

recommendation is to proceed with the cross-level interaction test even when the null hypothesis 

of no slope variance is retained when there is a strong theory-based rationale for a particular 

hypothesis. Also, the fact that the null hypothesis that ߬ଵଵ is zero was not rejected should be 

acknowledged explicitly so that future research can attempt to replicate the results obtained.  

Using a typical ߯ଶ critical value with two degrees of freedom (one for ߬ଵଵ and one for 

߬଴ଵ) to compare the models is overly conservative (i.e., likely to lead to a Type II error rate—not 

reject a false null hypothesis of no difference between the models). Accordingly, as a third 

option in terms of understanding whether ߬ଵଵ is different from zero, Stram and Lee (1994) 

argued that a more appropriate distribution for such tests is a mixture of two chi-square 

distributions. Subsequently, Crainiceanu and Ruppert (2004) developed a method that simulates 

the deviance for the model with only a random intercept when testing whether the variance of 

slopes is significant and Scheipl, Greven, and Kuchenhoff (2008) demonstrated that the 

procedure is superior to competing tests (e.g., F-tests and tests that use critical values from a 

mixture of chi-square distributions) in terms of controlling Type I error rates and has similar 

statistical power. The procedure involves evaluating whether the variance component differs 

from zero by calculating the proportion of simulated deviances that exceed the sample deviance 

(i.e., the p-value). Appendix A includes an R function in the RLRsim package for testing the 

statistical significance of variance components (Scheipl et al., 2008). Using our illustrative data, 

results indicated that the p value is 0.0013 and the bootstrap resampling results indicated that the 

95% confidence interval for ߬ଵଵ excludes zero and ranges from .004 to .046. 

In sum, results based on our illustrative data file suggest that the relationship between 

LMX and individual empowerment varies depending upon team membership. More precisely, 
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results summarized in Table 1 show that the variance in slopes across groups is ߬ଵଵ = .025, and 

results based on the bootstrap confidence interval, the -2 log-likelihood, and the Crainiceanu and 

Ruppert (2004) test suggest that this value is unlikely to be zero in the population. In our 

example, results provide evidence in support of team-level differences in the nature of the 

relationship between LMX and individual empowerment which suggest the need to understand 

what may be the variable(s) that explain such variability. We address this issue next. 

Step 4: Cross-level Interaction Model 

The fourth and final step in the model building process involves understanding whether a 

particular L2 variable is able to explain at least part of the variance in slopes across teams. 

Referring back to our substantive illustration, we would like to know whether leadership climate 

moderates the relationship between LMX and empowerment across teams. To do so, we begin 

building the cross-level interaction model with Equation 13 (identical to Equation 1): 

Cross-level Interaction Model (Level 1):� ௜ܻ௝ ൌ ଴௝ߚ ൅ ଵ௝൫ߚ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝   (13)ݎ

Then, we allow both intercepts and slopes to vary across teams as follows:  

     Cross-level Interaction Model (Level 2):� ߚ଴௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅  ଴௝�  (14)ݑ

Cross-level Interaction Model (Level 2):� ߚଵ௝ ൌ ଵ଴ߛ ൅ ଵଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅  ଵ௝  (15)ݑ

The difference between Equation 15 (cross-level interaction model) and Equation 11 

(random intercept and random slope model) is that Equation 15 includes the L2 predictor 

hypothesized to play a moderating role. We are no longer solely interested in whether there is 

variance in slopes across teams—that was the purpose of the previous step. Now, we are 

interested in understanding whether such variance can be explained by a particular L2 predictor 

(i.e., leadership climate).  

In Equation 15, the moderating effect of leadership climate on the relationship between 
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LMX and empowerment is captured by ߛଵଵ. Equivalently, ߛଵଵ is the cross-level interaction of 

LMX and leadership climate on empowerment. That is, ߛଵଵ represents the change in the slope of 

empowerment on LMX scores across teams when leadership climate increases by 1 point. For 

example, a result that ߛଵଵ is positive indicates that LMX is more strongly related to 

empowerment in teams with more positive leadership climate compared to teams with less 

positive leadership climate.  

Substituting the L2 Equations 14 and 15 into the L1 Equation 13 leads to a combined 

model as follows:  

Cross-level Interaction Model (Combined):  

௜ܻ௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଵଵ൫ߛ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯ ൅ ଴௝ݑ

൅ ଵ௝൫ݑ ௜ܺ௝ െ തܺ௝൯ ൅  ௜௝ݎ

(16) 

Equation 16 resembles the more familiar MMR model, which also includes the 

constituent linear terms. However, in contrast to the MMR model, Equation 16 includes the 

terms involving ݑ଴௝ and ݑଵ௝, which vary across L2 units and, as mentioned earlier, this is why 

they are labeled random effects. On the other hand, ߛ଴଴, ߛ଴ଵ, ߛଵ଴, and ߛଵଵ�are constant across L2 

units, so they are labeled fixed effects.  

Results using our illustrative data provide evidence in support of the cross-level 

interaction effect we tested. Table 1 shows that the slope of individual empowerment on LMX is 

expected to equal ߛଵ଴ = 0.269 for teams with an average leadership climate. However, the 

relationship between individual LMX and individual empowerment becomes stronger, by ߛଵଵ = 

.104 units, as a team’s leadership climate increases by one unit. 

Finally, an issue to consider is the possibility that as a result of implementing Step 2, 

results may suggest a nonsignificant L1 relationship between X and Y (i.e., ߛଵ଴ ൌ Ͳ). In such 
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instances, researchers may be hesitant to proceed with Step 3 and investigate possible cross-level 

interactions. However, there could be variability in group slopes although ߛଵ଴ ൌ Ͳ. Accordingly, 

if there is a theory-based rationale for examining cross-level interaction effects, we recommend 

proceeding with Step 3 regardless of the statistical significance of the direct effect for X. 

Moreover, standard practice when estimating interactions is to include lower-level effects, 

regardless of statistical significance, and this is a correct practice for the following reason. 

Consider the L2 equation for slopes for Step 3 (see Equation 11 above). In Equation 11, a 

nonsignificant relationship between X and Y implies that ߚଵ௝ ൌ  ଵ௝ (i.e., on average theݑ

relationship is zero, but groups deviate from zero by ݑଵ௝). Now, consider Equation 15, where the 

cross-level interaction effect is estimated by including ௝ܹ െ ഥܹ . In Equation 15, ߛଵଵ is the cross-

level interaction effect and ߛଵ଴ is the relationship between X and Y for groups with ௝ܹ ൌ ഥܹ . It is 

possible that ߛଵ଴ ൌ Ͳ for Model 3 in Equation 11, but ߛଵ଴ ് Ͳ after ௝ܹ is included in the 

equation and centered by the mean or some other value. Consequently, leaving X out of Step 4 

will force ߛଵ଴ ൌ Ͳ at the point where ௝ܹ ൌ ഥܹ . Accordingly, we recommend including X in the 

model to account for the fact that the relationship between X and Y may not be zero for the value 

at which ௝ܹ is centered. 

Multilevel Modeling Assumptions  

Although not specific to tests of cross-level interaction effects, there are several 

assumptions that underlie multilevel modeling in general, which parallel the usual OLS 

regression assumptions. Violating these assumptions can have consequences in terms of the 

validity of the inferences made from the results. Specifically, violating assumptions can lead to 

model misspecification—a misrepresentation of relationships among variables. Thus, it is 

important to assess compliance with these assumptions by using methods described by 
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Raudenbush and Bryk (2002) and Snijders and Bosker (2012).  

First, function forms are assumed to be correctly specified at each level (e.g., a linear, 

quadratic, or higher-order polynomial). For example, if there is a pattern of curvilinearity such 

that very high levels of LMX scores are associated with a decrease in empowerment scores (i.e., 

inverted U-shaped form), not including quadratic terms in the equation would preclude the 

identification of such non-linear relationship and, likely, result in interventions with detrimental 

consequences for individuals and organizations (Pierce & Aguinis, 2013). Second, there are 

several assumptions regarding residuals: (a) L1 residuals (i.e., ݎ௜௝) are assumed to be normally 

distributed and have a mean of zero, (b) L2 residuals (i.e., ݑ଴௝ and ݑଵ௝) are assumed to conform 

to a multivariate normal distribution and also have means of zero, (c) L1 residual variance is 

assumed to be constant (i.e., homoscedasticity) both within and between L2 units, and (d) L1 

residuals and L2 residuals are assumed to be uncorrelated. In addition to the overall concern 

about model misspecification, violating residual-based assumptions can lead to invalid 

hypothesis tests because standard errors may be grossly misspecified (Snijders & Bosker, 2012); 

so, there are alternatives that allow researchers to relax some assumptions regarding L1 and L2 

residuals and prevent such errors (e.g., Culpepper, 2010). Finally, violating the assumption that 

L1 residuals and L2 residuals are uncorrelated implies the possibility of crossover relationships. 

For example, individuals could be influenced by more than one leader (i.e., crossover leadership 

influences), resulting in a “cross-classified” situation. Such crossover influences may be more 

common than presently acknowledged (Han, 2005; Mathieu & Chen, 2011). Accordingly, Han 

(2005) proposed methods for considering crossover influences and modeling them. The presence 

of such crossover influences may affect not only the accuracy of tests of cross-level interaction 

hypotheses, but lead to overall model misspecification in general.  
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BEST-PRACTICE RECOMMENDATIONS 

 Although there is increasing awareness regarding the need for multilevel modeling in 

management research, there are important questions about what researchers should do prior and 

after data collection to improve the accuracy of substantive conclusions regarding cross-level 

interaction effects. We compiled a list of the most persistent and challenging questions by 

conducting a systematic review using the entire archives of two listservs: RMNET (Research 

Methods Division of the Academy of Management) and MULTILEVEL (list specifically 

devoted to multilevel analysis). At the time of this writing, RMNET includes approximately 

1,000 members and MULTILEVEL includes more than 1,400 members. The goal of our review 

was to gather all the questions posted on these listservs that are directly or indirectly related to 

the estimation and interpretation of cross-level interaction effects in multilevel modeling. In 

other words, our review provided us with information on the most frequent and challenging 

issues faced by researchers in their attempts to test hypotheses about cross-level interaction 

effects.  

 We conducted our search using the terms “cross-level,” “interaction,” “multilevel,” 

“moderator,” “moderate,” and “moderating.” Next, we discuss issues for which there is sufficient 

evidence to support a particular best-practice recommendation. We offer recommendations for 

actions researchers can take prior to data collection and recommendations researchers can 

implement after data have been collected. Table 2 offers a list of these recommendations, which 

we describe in more detail next. 

----------------------------------- 

Insert Table 2 about here 

----------------------------------- 
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Pre Data Collection Recommendations 

 Issue #1: What is the operational definition of a cross-level interaction effect? A 

frequently asked question regarding cross-level interaction effects refers to the very definition of 

this effect. First, there is a question of whether ߬ଵଵ (i.e., the variance of slopes across groups) is 

the cross-level interaction effect. Second, there is a question of whether ߛଵଵ in the hierarchical 

linear model in Equation 15 can truly be called an interaction effect given that it is associated 

with a term that does not involve a product between two variables, but with one variable only 

(i.e., W).  

 First, let’s consider ߬ଵଵ. As mentioned earlier, a non-zero ߬ଵଵ means that the slope of the 

L1 criterion on the L1 predictor varies across higher-level units (e.g., teams). Referring back to 

our substantive example, a non-zero ߬ଵଵ means that the effect of LMX on empowerment is not 

homogeneous across teams. However, this heterogeneity may be due to one or more potential L2 

moderators. In our particular example, we tested the potential moderating effect of leadership 

climate. However, we could have considered additional moderators, instead or in addition to, 

leadership climate. Thus, similar to the assessment of moderating effects in the context of meta-

analysis, the presence of heterogeneity is an indication that the search for particular moderators 

is warranted, but this is not the interaction effect per se (Aguinis, Gottfredson, & Wright, 2011).  

 Now, let’s consider the meaning of ߛଵଵ in the context of two extreme situations. First, 

assume that ߛଵଵ in Equation 15 is zero. This would mean that L2 variable W does not explain 

variance in the slope of the L1 Y outcome on the L1 X predictor across teams. Thus, for every 

unit-increase in the higher-order variable (W), the relationship (slope) between L1 X and L1 Y 

remains unchanged. Now, assume that ߛଵଵ in Equation 15 is a very large and positive number, 

which implies that a small change in the value of W is associated with a large change in the slope 
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of L1 outcome Y on L1 predictor X across teams. Thus, a non-zero ߛଵଵ means that the L1 effect 

of X on Y is distributed across L2 units—and this is the reason why Raudenbush and Bryk (2002) 

used the term distributive effect to refer to the cross-level interaction effect.  

 The fact that ߛଵଵ�represents the cross-level interaction effect, also labeled the moderating 

effect of W on the X-Y relationship, is perhaps seen more easily by referring to the combined 

Equation 16. In Equation 16, which has a familiar form that closely matches that of MMR, ߛଵଵ is 

associated with the product term between re-scaled L1 predictor X and re-scaled L2 predictor W. 

In contrast, in the L2 Equation 15, ߛଵଵ is a coefficient predicting slope values, which is a model 

not as familiar to management researchers compared to a model that predicts criterion Y scores.  

 In sum, the coefficient ߛଵଵ is interpreted as the cross-level interaction effect regardless of 

whether it is obtained by using Equation 15 (i.e., predicting ߚଵ௝ based on ൫ ௝ܹ െ ഥܹ ൯) or Equation 

16 (i.e., predicting ௜ܻ௝ based on ൫ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯). The variance of slopes across groups ߬ଵଵ 

is not the cross-level interaction effect because, although it provides information on the extent to 

which the slope of the L1 criterion on the L1 predictor varies across higher-level units (e.g., 

teams), it does not provide information on the particular variable(s) that are associated with this 

variability. The specific interpretation regarding the meaning of the cross-level interaction effect 

 ଵଵ�will depend on the approach adopted regarding re-scaling, which is in turn dictated byߛ

theory-based considerations. We describe re-scaling in more detail in our discussion of Issue #4.  

Issue #2: What is the statistical power to detect an existing cross-level interaction 

effect? A second pre-data collection question that has appeared frequently refers to research 

design and statistical power. Specifically, researchers are interested in understanding how large 

sample size should be to detect existing cross-level interaction effects. Statistical power is a 

complex issue in the context of cross-level interaction effects and tools such as Optimal Design 
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(Raudenbush, 1997; Spybrook, Raudenbush, Congdon & Martinez, 2009) and Power IN Two-

level designs (PINT; Bosker, Snijders & Guldemond, 2003) do not provide power estimates for 

cross-level interaction tests. In fact, Snijders (2005: 5) noted that “for the more general cases, 

where there are several correlated explanatory variables, some of them having random slopes, 

such clear formulae are not available.” Accordingly, Scherbaum and Ferreter (2009: 363) 

concluded that “estimates of statistical power of cross-level interactions are much more complex 

than the computations for simple main effects or variance components… and there is little 

guidance that can be provided in terms of simple formulas.”  

Because of a lack of analytic solutions, Mathieu et al. (2012) conducted a Monte Carlo 

simulation to understand the impact of various factors that affect the power of cross-level 

interaction tests. Results of their study revealed that the power to detect cross-level interactions 

is determined primarily by the magnitude of the cross-level interaction effect, the variance of L1 

slopes across L2 units, and by L1 and L2 sample sizes. Researchers usually do not have control 

over the size of the cross-level interaction effect or the variance of L1 slopes across L2 units. On 

the other hand, although there may be practical and resources-related constraints, researchers 

may be able to increase L1 and L2 sample sizes to increase power. As concluded by Raudenbush 

and Liu (2000), L1 sample size is most relevant for the statistical power to detect L1 direct 

effects and L2 sample size is most relevant for the statistical power to detect L2 direct effects. 

Thus, researchers interested in both types of direct effects face a difficult dilemma in terms of the 

allocation of the research budget, which is typically limited and may not allow for the allocation 

of resources to increase both L1 and L2 sample sizes.  

For the particular case of power to detect cross-level interaction effects, Mathieu et al.’s 

results revealed that the average L1 sample size has a relative premium of about 3:2 as compared 
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to the L2 sample size. Moreover, Mathieu et al.’s results indicated that “both levels’ samples 

sizes interacted significantly with the magnitude of the cross-level interaction, and with the 

variability of the Level-1 slopes…Ultimately, the decision as to focus on maximizing Level-1 

versus Level-2 sample sizes may come down to what other parameters are of interest in an 

investigation…if besides the cross-level interaction a researcher is interested in testing a lower-

level direct effect, then perhaps Level-1 sample sizes are most important. Alternatively, if the 

researcher is also interested in testing cross-level direct effects, that may suggest emphasizing the 

number of units that are sampled” (Mathieu et al., 2012: 960).  

In addition to the simulation, Mathieu et al. (2012) conducted a power analysis based on 

articles published in Journal of Applied Psychology from 2000 to 2010 and found that power has 

been quite low. Specifically, at the Į = .05 level, the average power was .40, and at Į = .01, the 

average statistical power value was only .22. Thus, statistical power to detect cross-level 

interactions is substantially below the conventional .80 level and researchers interested in testing 

interaction effects in the context of multilevel modeling should indeed be concerned about 

statistical power. In other words, given an existing population cross-level interaction effect, the 

typical probability of actually detecting the effect is less than the flip of a coin. Although there is 

no way to know whether a particular population effect exists, low statistical power means that it 

is likely that many researchers have erroneously concluded that a cross-level interaction effect is 

not different from zero.  

Based on these results, Mathieu et al. (2012) created a computer program available online 

at http://mypage.iu.edu/~haguinis/crosslevel.html that allows researchers to estimate the power 

of their cross-level interaction test prior to data collection. The program can be used to gather 

important information in terms of solving a possible dilemma regarding the decision to increase 
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the number of L1 compared to L2 units. For example, a researcher can use the program under 

two different scenarios. Hypothetical Scenario A would involve the possibility of increasing the 

number of individuals per team by 5. Hypothetical Scenario B would involve holding the number 

of individuals per team constant but, instead, increasing the number of teams from 50 to 80. 

Using these different values as input in the power calculator allows for an understanding of the 

statistical power associated with each of these scenarios, and results can be used for design 

planning and as a guide in making more informed and better decisions about how to allocate 

research resources prior to data collection. In addition, the power calculator can also be used to 

make better-informed decisions about substantive conclusions. Specifically, if a cross-level 

interaction effect hypothesis is not supported and the power calculator suggests that power was 

sufficient, then one can have confidence that the effect does not exist in the population. On the 

other hand, if power was insufficient, then researchers need to report the power value obtained 

and, unfortunately, report that results are inconclusive because of the possibility that the 

population effect exists but was not detected in the sample.  

In sum, given the possible trade-offs between L1 and L2 sample sizes as well as 

interactive effects of the various factors on power (e.g., size of the cross-level interaction effect, 

variance of L1 slopes across L2 units), our recommendation is to abandon popular rules of thumb 

such as the “30-30 rule” (i.e., having at least 30 upper-level units with at least 30 lower-level 

entities in each; Kreft & De Leeuw, 1998). Also, researchers should not assume that a particular 

sample size is sufficient to detect an existing effect—for example, Liden and Antonakis (2009: 

599) asserted that “30-50 [i.e., at least 30 upper-level units and at least 50 lower-level entities in 

each]…should be sufficient to estimate multilevel models correctly.” Instead, researchers should 

use the Mathieu et al. (2012) power calculator a priori to make decisions about research design 
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features and also post hoc to understand whether published studies reached sufficient levels of 

statistical power to detect existing effects. 

As an illustration, we used Mathieu et al.’s (2012) power calculator with our own data 

set. Necessary input includes L1 and L2 sample sizes, ICC, and several of the parameter 

estimates in Equation 16. As noted earlier, the program can be used a priori with various sample 

sizes to understand what particular combination of L1 and L2 sample size would lead to a 

desired power level (e.g., .80). Alternatively, the program can also be used after a study is 

conducted to understand the probability that the particular L1 and L2 sample sizes used allowed 

for a detection of an existing cross-level interaction effect of a particular size.  

Appendix B includes the annotated R code we used for our power calculation (this code 

is also available at http://mypage.iu.edu/~haguinis). We used Chen et al.’s (2007) estimates to 

guide us on reasonable values for the ICC of ௜ܺ௝ (i.e., .12), intercept variance between teams 

(roughly .1), and within-team variance in individual empowerment (approximately .8). Lastly, 

we also needed estimates for the grand mean relationship between ௜ܺ௝ and ௜ܻ௝, the variability of 

slopes, and the magnitude of the cross-level interaction effect. We chose modest values 

(compared to typical values found in published articles and reported by Mathieu et al., 2012) for 

the relationship between ௜ܺ௝ and ௜ܻ௝ (.4) and the standard deviation of slopes (.1). We may not 

have any indication as to the expected size of the cross-level interaction effect, so we could use 

the calculator with a moderate effect (also, in relationship to values reported by Mathieu et al., 

2012). We emphasize that the choice for a particular targeted effect size should be guided by 

theoretical (i.e., what does past research show regarding the size of the effect?) as well as 

practical (i.e., what is a sufficiently large effect worth detecting?) considerations. However, 

given the pedagogical and illustrative nature of our power analysis, we simplified the process of 
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selecting our targeted effect size. Entering these values into the power calculator provides 

evidence that the power to detect a moderate effect for our proposed study design was .82. 

 Issue #3: Is it possible to test for cross-level interaction effects involving a 

categorical L2 or standardized predictor? A third issue that has been frequently raised refers 

to the possibility that the multilevel model may include a L2 variable that is not continuous in 

nature but, rather, has discrete categories (e.g., old vs. new compensation system). In other 

words, the question is whether a researcher can test a hypothesis about cross-level interaction 

effects involving a L2 predictor that is categorical. Fortunately, this is possible. However, similar 

to the use of categorical predictors in the context of MMR (Aguinis, 2004), the interpretation of 

the cross-level interaction effect is in reference to differences in relationships between two or 

more groups. Based on our discussion so far, and specifically referring to Equation 16, ߛଵଵ is 

interpreted as a change in the slope of Y on X across teams associated with a 1-unit change in W. 

Now, assume that W is a binary variable that was coded as 1 = new compensation system and 0 = 

old compensation system. The hypothesis is that the relationship between LMX scores and 

empowerment across teams will vary as a function of compensation system. If ߛଵଵ= 1.5, its 

interpretation is that the slope of Y on X is 1.5 points larger for teams in the new compensation 

system (i.e., coded as 1) compared to teams in the old compensation system (i.e., coded as 0). In 

other words, there is a stronger relationship between LMX and empowerment for individuals 

working in teams under the new compensation system. If the binary moderator is group-mean 

centered, the mean is a proportion of the category scored 1, but the interpretation is similar in the 

sense that the coefficient refers to changes in the slope of Y on X for teams coded as 1 compared 

to teams coded as 0.  

 When the categorical L2 predictor includes more than k = 2 values, it is necessary to 
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create k – 1 dummy codes, which are added to Equation 16. The process is similar to creating 

dummy codes in the context of MMR (see Aguinis, 2004, Chapter 8). Assuming a L2 predictor 

with k = 3, the two dummy codes ௝ܹሺଵሻ�(e.g., comparison of category 1 vs. 2) and ௝ܹሺଶሻ (e.g., 

comparison of category 1 vs. 3) are included in Equation 16 as follows: 

 ௜ܻ௝ ൌ � ଴଴ߛ ൅ ଴ଵሺଵሻ൫ߛ ሺܹଵሻ௝ െ ഥܹሺଵሻ൯ ൅ ଴ଵሺଶሻ൫ߛ ሺܹଶሻ௝ െ ഥܹሺଶሻ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅

ଵଵሺଵሻ൫ߛ����������������������� ௜ܺ௝ െ തܺ௝൯൫ ௝ܹሺଵሻ െ ഥܹሺଵሻ൯ ൅ ଵଵሺଶሻ൫ߛ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹሺଶሻ െ ഥܹሺଶሻ൯ ൅ ଴௝ݑ ൅              

ଵ௝൫ݑ���������  ௜ܺ௝ െ ௝ܺ൯ ൅  ௜௝        (17)ݎ

 Note that, similar to the situation involving two categories only, the interpretation of the 

cross-level interaction effect coefficients must consider which category was coded as 1 and 0 for 

each dummy variable. So, for example, assuming that the categories are three locations: (a) 

Colorado, (b) Indiana, and (c) Texas, and that ௝ܹሺଵሻ involves a comparison of Colorado (coded 

as 1) and Texas (coded as 0). A statistically significant ߛଵଵሺଵሻ = 2 would mean that the slope of 

empowerment on LMX is 2 points larger for teams in Colorado compared to teams in Texas. 

 Finally, some researchers choose to standardize predictors (i.e., re-scale raw scores so 

they have a mean of zero and standard deviation of one) to be able to interpret results referring to 

SD units instead of the units used in the original scales (e.g., 7-point Likert type scales). In fact, 

this is precisely what Chen et al. (2007) did in their study. In such situations, referring back to 

Equation 16, ߛଵଵ is the expected change in the size of the slope of LMX on empowerment in SD 

units that is associated with a 1-SD unit increase in the L2 predictor (i.e., leadership climate). 

Post Data Collection Recommendations 

 Issue #4: How should I re-scale (i.e., center) predictors and why? As noted earlier, re-

scaling predictors is common when conducting multilevel analyses to help in the interpretation 

of results (Dalal & Zickar, 2012). The two main re-scaling approaches are group-mean centering 
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(which we used in our article) and grand-mean centering (Enders & Tofighi, 2007). A third 

option is to not re-scale predictors at all, but this is not recommended because in many situations 

the resulting parameter estimates will be uninterpretable. Specifically, if we use raw (i.e., 

uncentered) scores instead of re-scaled scores,ߚ�଴௝�in Equation 1 represents the predicted level of 

empowerment for a LMX score of zero. But, this would be a meaningless interpretation because 

the LMX scale ranges from 1 to 7 and does not include zero as a possible value. Moreover, a 

LMX score of zero may not be meaningful at the construct level because it is possible to have a 

low or high LMX, but it is not possible to have no LMX at all. Most organizational behavior and 

human resource management measures do not have a true zero value because they are not ratio in 

nature. Similarly, many measures often used in entrepreneurship research (e.g., entrepreneurship 

orientation; Covin & Wales, 2012) and strategy (e.g., firm resources and capabilities; Barney, 

Ketchen, & Wright, 2011) also do not have a true zero value. Thus, re-scaling is needed in most 

studies in these domains. Alternatively, some financial measures used in strategy do have a 

meaningful zero point (e.g., return on assets, return on investment; Dalton & Aguinis, in press) 

so, in these cases, re-scaling may not be needed.  

 Group-mean centering changes the mean and correlation structure of the data, causing the 

L1 predictors to be uncorrelated with the L2 predictors (Enders & Tofighi, 2007). Also, in the 

first section of our article we used group-mean centering for the L1 predictor scores to interpret 

the resulting coefficients in reference to team-level average LMX scores. Alternatively, grand-

mean centering involves using the mean of all scores at a particular level. So, going back to our 

example, grand-mean centering the L1 predictor would involve using the mean LMX scores 

across all 630 individuals and grand-mean centering the L2 predictor would involve using the 

mean team leadership score across all 105 teams. An important concern regarding the use of 
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grand-mean centering for the L1 predictor is that ߛଵଵ (i.e., cross-level interaction effect 

coefficient) conflates the between-team and within-team effects. In other words, using grand-

mean centering for the L1 predictor leads to a cross-level interaction effect coefficient that is a 

“mixed bag” of two separate effects: (a) a true cross-level interaction involving the upper-level 

moderator and the within-group variance of the lower-level predictor (which is what we are 

interested in estimating), and (b) a between-level interaction (i.e., an interaction between the 

upper-level moderator and the between-group variance of the lower-level predictor). Thus, 

Enders and Tofighi (2007) argued that if a researcher uses grand-mean centering for the L1 

predictor, it is not possible to make an accurate, or even meaningful interpretation of the cross-

level interaction effect. Accordingly, Hofmann and Gavin (1998) concluded that group-mean 

centering leads to the most accurate estimates of within-group slopes and minimizes the 

possibility of finding spurious cross-level interaction effects. Similarly, Preacher et al. (2010) 

used the label “unconflated model” in referring to a model based on group-mean centered L1 

predictors. 

 Although group-mean centering has been recommended, overall, as the best strategy in 

the context of testing cross-level interaction hypotheses, it is important to recognize that such a 

choice needs to reflect theoretical processes related to deviations from a group average (e.g., 

social comparison effects in team research). Moreover, Bliese (2002: 433) noted that “spurious 

cross-level interactions are rare, so one can generally use…. grand-mean-centered variables to 

test for cross-level interactions as long as one runs an additional model with group-mean-

centered variables to check for spurious interaction effects.” The alternative grand mean 

centering strategy would involve controlling for between-group variance by estimating the 

interaction between the L2 predictor and the group averages for the L1 constituent linear terms. 
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One advantage of group-mean centering is that, because there is no need to control for across-

group variance (i.e., group-mean centering addressing this issue), the resulting model includes 

fewer parameter estimates. However, estimating cross-level interactions using group-mean 

centering has a different substantive interpretation than estimating interactions using grand-mean 

centering. As noted by an anonymous reviewer, using group-mean centering suggests that testing 

interactions needs to reflect theoretical processes addressing deviations from a group average 

such as in frog pond/social comparison effects in studies of teams. However, not all theories 

specifically refer to deviations from group averages or have reached that level of sophistication. 

In some situations, it may be more appropriate to use grand-mean centering with across-group 

variance controlled because a theory may address raw differences between L1 entities, not 

differences relative to a group average.  

 In short, group-mean centering the L1 predictor is the recommended approach in most 

situations when there is an interest in testing hypotheses about cross-level interaction effects. 

However, in some situations it may be more appropriate to use grand-mean centering with 

across-group variance controlled because a particular conceptualization may address raw 

differences between L1 entities rather than differences relative to a group average. Thus, the 

choice for a re-scaling approach must be accompanied by a theory-based justification regarding 

the underlying process that is being modeled. 

 Issue #5: How can I graph a cross-level interaction effect? Another question often 

posted on the listservs refers to how to produce graphs to illustrate a cross-level interaction 

effect. Similar to the single-level context, graphs can be used to illustrate the nature of the 

interaction effect, but should not be used to draw conclusions about the size or importance of the 

effect (Aguinis, 2004). Considering the combined model in Equation 16, the expected value of 
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௜ܻ௝ conditioned on values of ௜ܺ௝ and ௝ܹ can be written as:  

൫ܧ ௜ܻ௝ȁ ௜ܺ௝ǡ ௝ܹ൯ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଵଵ൫ߛ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯

ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ቀߛଵ଴ ൅ ଵଵ൫ߛ ௝ܹ െ ഥܹ ൯ቁ ൫ ௜ܺ௝ െ തܺ௝൯ 

(18) 

(19) 

In Equation 19, the relationship between ௜ܺ௝ and ௜ܻ௝ is represented by the term preceding 

௜ܺ௝ െ തܺ௝, namely ߛଵ଴ ൅ ଵଵ൫ߛ ௝ܹ െ ഥܹ ൯. If ௝ܹ is a continuous variable, Equation 19 can be used to 

plot the X-Y relationship for any value for ௝ܹ. The equation describing the relationship between 

X and Y for a specific value of ௝ܹ is called a simple regression equation and the slope of Y on X 

at a single value of ௝ܹ is called a simple slope. Preacher, Curran, and Bauer (2006) provided 

specific examples as well as a description of computer programs in SAS, SPSS, and R that allow 

for the creation of plots to more easily understand the nature of the interaction effect, including 

the plotting of simple slopes. The Preacher et al. (2006) programs also allow for plotting regions 

of significance, which are values of W between which the simple slope of Y on X is statistically 

significant.  

 Equation 19 can also be used to plot the interaction effect in cases where ௝ܹ is a binary 

L2 variable that takes on the values of 0 and 1. Also, if ௝ܹ is a binary variable, it is easier to 

interpret the model coefficients if ௝ܹ is not re-scaled. Consequently, the predicted values of ௜ܻ௝ 

for the two groups defined by ௝ܹ are: 

൫ܧ ௜ܻ௝ȁ ௜ܺ௝ǡ ௝ܹ ൌ Ͳ൯ ൌ ଴଴ߛ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ 

൫ܧ ௜ܻ௝ȁ ௜ܺ௝ǡ ௝ܹ ൌ ͳ൯ ൌ ଴଴ߛ ൅ ଴ଵߛ ൅ ሺߛଵ଴ ൅ ଵଵሻ൫ߛ ௜ܺ௝ െ തܺ௝൯ 

(20) 

(21) 

Now, the X-Y relationship can be plotted for each group. To do so, we can use values of 1 

standard deviation below the mean, the mean, and one standard deviation above the mean for X. 

Using these particular values is recommended because they allow for an understanding of the 
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nature of the relationship across a wide range of X scores (Aiken & West, 1991). Moreover, it 

may also be useful to choose additional values that may be informative in specific contexts. 

 The plots included in Figure 3 show the cross-level interaction effect in our illustrative 

data. One important issue to consider concerns the axis for the Y scale. In many published 

articles, researchers use reduced scales for the Y axis (e.g., 4 scale points instead of 7). Such 

reduction in the scale gives the false impression that the effect is more important because the 

slopes seem steeper and also more different from each other. So, it is acceptable to reduce the 

length of the axis to understand the nature of the interaction, as we have done in Figure 3’s Panel 

(a) (Panel (b) includes the same plot with the full Y scale represented along the axis). But, it is 

not acceptable to do so and then make statements about how “important” an effect is given the 

degree of steepness of the slope on the graph. The annotated R code in Appendix A also includes 

the necessary commands to create the plots included in Figure 3. 

----------------------------------- 

Insert Figure 3 about here 

----------------------------------- 

 Issue #6: Are cross-level interaction effects symmetrical? Another issue related to the 

interpretation of cross-level interaction effects refers to whether such effects are symmetrical. In 

other words, can we say that the L2 variable moderates the effect of the L1 predictor on the L1 

criterion and, also, that the L1 predictor moderates the effect of the L2 predictor on the L1 

criterion? From a statistical standpoint, it is just as appropriate to label the L2 predictor as the 

moderator of the effect of the L1 predictor X on the L1 outcome Y as it is to label the L1 

predictor X as the moderator of the effect of the L2 predictor W on the L1 outcome Y because 

cross-level interactions are symmetrical. In multilevel modeling, it is usually the case that L2 is 
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labeled as the moderator because, conceptually, it seems more appropriate to frame the higher-

level variable as the contextual factor that affects the relationship between lower-level variables.  

Specifically, in our discussion regarding how to graph cross-level interaction effects, we used the 

L2 variable as the moderator. However, referring back to Equation 16, the value for ߛଵଵ�is 

obviously the same whether it is associated with ൫ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯ or with ൫ ௝ܹ െ ഥܹ ൯൫ ௜ܺ௝ െ

തܺ௝൯. Thus, the choice to interpret W or X as the moderator is based on conceptual reasons.  

 Referring back to our substantive illustration, we could have chosen to state the cross-

level interaction effect hypothesis using either of the following forms: 

Hypothesis 1a—L2 moderator: The effect of individual LMX on individual empowerment 

will be moderated by leadership climate such that higher levels of leadership climate will 

lead to a stronger LMX-empowerment relationship compared to lower values of 

leadership climate.  

Hypothesis 1b—L1 moderator: The effect of leadership climate on individual 

empowerment will be moderated by individual LMX such that higher levels of LMX will 

lead to a stronger leadership climate-empowerment relationship compared to lower 

values of LMX.  

 In short, a substantive interest in studying either the L2 or the L1 predictor as a moderator 

dictates how a researcher will conceptualize the nature of the cross-level interaction effect, but 

L2 is usually labeled as the moderator due to conceptual reasons. Choices about how to phrase 

the cross-level interaction effect hypothesis as well as graph the resulting effect will follow 

directly from the choice of which variable is labeled the moderator. 

 Issue #7: How can I estimate more than one cross-level interaction effect? Also 

related to post data collection issues are questions about more complex models. For example, 
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assume we are interested in testing two cross-level interactions: (a) interaction between L2 

predictor W and L1 predictor X on Y, and (b) interaction between L2 predictor Z and L1 predictor 

X on Y. A frequent question is whether testing these hypotheses should be done sequentially in 

separate models or simultaneously in one single model including both ൫ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯ and 

൫ ௜ܺ௝ െ തܺ௝൯൫ ௝ܼ െ ҧܼ൯.  

 Overall, the recommendation is to test both interaction effects as part of one combined 

model so that each estimated effect is adjusted for all the theoretically relevant components. If 

the hypothesized cross-level interaction effects are evaluated in separate models, it is possible 

that these effects will be upwardly biased due to possible non-zero intercorrelations between the 

various interaction effects. However, given that most cross-level interaction tests are likely to be 

insufficient regarding statistical power (see Issue # 2), a strong theory-based rationale for the 

presence of such effects may justify conducting the tests separately. From the perspective of a 

tradeoff between Type I (i.e., false positive) and Type II (i.e., false negative) statistical errors, 

this approach would be equivalent to conducting follow-up comparisons in ANOVA without first 

conducting an omnibus test.   

 An additional consideration in implementing our recommendation to test both interaction 

effects as part of one combined model is that complex models may not converge, they may crash, 

or run out of degrees of freedom. In such situations, and absent a strong theory-based rationale 

for testing models separately, our recommendation is to proceed with testing models separately 

but then report results in a transparent and open manner (Aytug, Rothstein, Zhou, & Kern, 2012). 

In other words, it is necessary to be clear about this limitation (i.e., models were tested 

separately), the reason why (e.g., the combined model crashed), and consequences of the 

limitation (i.e., the need to replicate results in future research due to a possible inflation of Type I 
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error rates) (Brutus, Aguinis, & Wassmer, 2013).  

Finally, an issue related to complex models in general is that they may not converge. 

There are several reasons that may lead to this situation. For example, a model may not converge 

when certain algorithms are used (Wolfinger & O’Connell, 2007), the random effects are highly 

correlated, or the model is misspecified (e.g., the model may be too complex for the data). There 

are several possible courses of action when models do not converge. An initial course of action it 

to use a different software program. If the model still does not converge, a second alternative is 

to center predictors because centering can help reduce correlations among random intercepts and 

slopes (Gelfand, Sahu, & Carlin, 1995). Ultimately, the source of the problem may be that the 

model is misspecified or too complex for the data in hand. In such cases, the only solution may 

be to simplify the random effects structure of the model. 

 Issue #8: How can I estimate cross-level interaction effects involving variables at 

three different levels of analysis? Another issue regarding more complex models involves the 

possibility of testing cross-level interactions involving more than two levels of nesting. As one 

illustration, a researcher may be interested in testing a three-level interaction effect of LMX 

(Level 1, X), leadership climate (Level 2, W), and organizational culture (Level 3, Q) on 

individual empowerment. In such three-level models, team-level relationships are allowed to 

vary across higher-level units (e.g., organizations, geographic regions). Other situations that may 

involve three levels of analysis are studies that rely on experience sampling methodology or 

other types of diaries (e.g., Uy, Foo, & Aguinis, 2010). In such situations, there are observations 

of individuals over time (i.e., observations are nested within individuals) and individuals are 

nested within units (e.g., teams). So, in this situation there are three levels of analysis with two 

levels of nesting. In other words, individual growth trajectories reside at L1, differences in 
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growth rates across individuals within teams comprise the L2 model, and the variation across 

teams is the L3 model (Raudenbush & Bryk, 2002, Chapter 8). 

 Assuming that the three levels are individuals, teams, and organizations, a three-level 

model requires a subscript k to distinguish various organizations. For instance, ௜ܺ௝௞ is the LMX 

score for the ith individual who is a member of team j within organization k. Similarly, ௝ܹ௞ is the 

leadership climate score for team j in organization k, and ܳ௞ is the organizational culture value 

for organization k. This inclusion of a third-level variable also entails the addition of an 

additional residual value: (ݒ଴௞). This implies the potential of additional third-level variance 

components: intercept variance (߮00), slope variance (߮11), and intercept-slope covariance (߮01). 

 This inclusion of additional variance components allows for several kinds of ICCs to be 

calculated (Hox, 2010; Snidjers & Bosker, 2012). First, the proportion of total variance 

explained by the L3 variable, which is ߮଴଴Ȁሾ߮଴଴ ൅�߬଴଴ ൅  ଶሿ. Similar ICCs can be calculatedߪ

for each level. Second, the proportion of total variance explained by the L3 and L2 variables, 

which is [߮଴଴ ൅�߬଴଴ሿȀሾ߮଴଴ ൅�߬଴଴ ൅  ଶሿ. Third, is the proportion of variance shared by the L3ߪ

and L2 variables, which is ߮଴଴Ȁሾ߮଴଴ ൅�߬଴଴ሿ. 

 In addition to a variety of ICCs, there are a number of different regressions that can be 

performed when conducting a three-level analysis. For example, for each L1 variable, there are 

three different types of regressions: within-L2 regression, within-L3/between-L2 regression, and 

the between-L3 regression (Snidjers & Bosker, 2012).  

 Testing for complex models, such as three-level cross-level interactions involves 

expanding Equation 16 to include all first-order effects, all two-way cross-level interaction 

effects, and finally the term carrying information about the three-level interaction effect: 

൫ ௜ܺ௝௞ െ തܺ௝௞൯൫ ௝ܹ௞ െ ഥܹ௞൯ሺܳ௞ െ തܳሻ. All issues we discussed earlier regarding two-way cross-
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level interactions apply to the three-level interaction context (Hox, 2010; Snidjers & Bosker, 

2012). For example, model building and centering the variables can all be generalized from a 

two-level model. Further, there should be a clear definition of the cross-level interaction effect, 

all constituent terms should be included in the equation, and so forth.  

 A challenge regarding tests of three-way cross-level interaction effects is that it will be 

necessary to collect data from multiple higher-level units in order to capture possible variability 

of L1 and L2 intercepts and slopes across L3 units. In fact, in many cases researchers may 

abandon hypotheses involving three-level interaction effects due to insufficient evidence 

regarding variation in intercepts and/or slopes at the third level. For example, Raundenbush, 

Rowan, and Cheong (1993) conducted a study involving the following three levels: (L1) classes, 

(L2) teachers, and (L3) schools. However, “because the number of schools was small and 

because there was little evidence of school-to-school variation, no level-3 predictors were 

specified” (Raudenbush & Bryk, 2002: 237). 

 We are not aware of a tool that would allow for the estimation of statistical power to 

detect three-level interaction effects. Although Konstantopolous (2008a, 2008b) addressed 

statistical power in the context of three-level models, this work refers to statistical power 

computations specifically for a dummy-coded treatment effect (i.e., main effect), but it does not 

address computations regarding three-level cross-level interaction effects. Nevertheless, given 

the increased level of complexity of the model tested and results regarding the importance of the 

lower-level sample size regarding power reported by Mathieu et al. (2012), other things equal, 

statistical power for detecting a three-level interaction effect is unlikely to be greater than the 

power to detect a two-level cross-level interaction effect. Thus, our recommendation is to use the 

Mathieu et al. (2012) power calculator in making research design decisions to make sure there is 
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sufficient power to detect each of the two-level cross level interaction effects. Although this will 

not guarantee sufficient power, this will at least produce some evidence about the probability of 

detecting a three-level interaction effect. Moreover, there should be a strong theory-based 

rationale to posit such a complex interaction effect. Clearly, there is a need for future work 

regarding the statistical power of the three-level interaction effect test.  

 Issue #9: What is the practical significance of the cross-level interaction effect? An 

issue also related to the interpretation of results refers to the practical significance of a cross-

level interaction effect. A necessary step for understanding the practical significance of the cross-

level interaction effect is to estimate the strength of the effect (Aguinis, Werner, Abbott, Angert, 

Park, & Kohlhausen, 2010). When using OLS regression, researchers usually estimate effect 

sizes based on the extent to which a variable predicts outcomes of interest (i.e., regression 

coefficient associated with the product term) or based on fit (i.e., proportion of variance 

explained by the interaction effect, usually assessed using R2) (Aguinis, 2004). Similar options 

are available in the context of multilevel modeling and each one has advantages and 

disadvantages. Next, we describe each of these options by relying mainly on work by Hox 

(2010), Roberts, Monaco, Stovall, and Foster (2011), and Snidjers and Bosker (2012).  

 The first option is to focus on the extent to which the cross-level interaction predicts the 

outcome of interest, which is indicated by ߛଵଵ. This is a useful indicator because it refers to the 

original metric used in collecting the data. However, the other side of the coin is that, precisely 

because the coefficient is scale-specific, its size depends on the measures used to assess X, Y, and 

W. For example, referring back to our illustration, if a researcher uses a 100-point scale for 

empowerment, the resulting cross-level interaction effect ߛଵଵwill be much larger than if a 

researcher uses a 7-point scale. Because ߛଵଵ provides information regarding the prediction of Y 
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scores, it is considered an index of an interaction’s predictive power.  

A second option for assessing effect size that has the advantage of scale-independence 

consists of focusing on the cross-level interaction’s explanatory power: the proportion of the 

total variability of the slope of Y on X across teams that is explained by the L2 predictor W. To 

do so, we refer back to Equation 16, in which ݑଵ௝ is the error term and its variance, denoted by 

߬ଵଵ, represents the total across-team variance in slopes. Equation 15 shows also the error term 

 ଵ௝ in Equation 16 is what is leftݑ Note that .(ଵ௝ that is independent of ௝ܹߚ i.e., the portion of) ଵ௝ݑ

unexplained after controlling for the effect of W, and we use the symbol ߬ଵଵ௪�to refer to the 

variance of this error term. Accordingly, we can calculate the proportion of total across-team 

variance in slopes explained specifically by W as follows: 

  
ఛభభିఛభభೢ

ఛభభ
.      (22) 

We computed the proportion of the total slope variance explained by the moderating 

effect of leadership climate using results shown in Table 1. We found that 
ఛభభିఛభభೢ

ఛభభ
 = 

Ǥ଴ଶହିǤ଴ଵଽ
Ǥ଴ଶହ �= .24. In other words, W accounts for 24% of the total variance of ߚଵ௝ across teams. 

This is a useful indicator of practical significance because it can be used to understand the 

relative importance of effects within one study and also across studies given that the metric is 

proportion of variance explained. 

 A third, commonly used, option is to estimate the effect size using a “pseudo R2” metric. 

In multilevel modeling, we can obtain a pseudo R2 value for each of the steps in the model 

building process, which we have done and reported in Table 1 using our illustrative data. For 

example, for Step 2, which involves the random intercept and fixed slope model, predicted 

criterion scores are obtained as follows: 
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    ෠ܻ௜௝ ൌ ଴଴ߛ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯    (23) 

which is the same as Equation 8, but excluding the error terms ݑ଴௝ andݎ�௜௝. As shown in Table 1, 

pseudo R2 increased from no variance explained by the null model to 23% of variance explained 

by the random intercept and fixed slope model. In other words, the addition of the coefficient 

associated with the L2 predictor increased variance explained by another 23%. The computation 

of pseudo R2 for Step 3, which involves the random intercept and random slope model, involves 

calculating the squared correlation between observed and predicted ௜ܻ௝ scores based on Equation 

12 and excluding the error terms ݑ଴௝ǡ ଵ௝൫ݑ ௜ܺ௝ െ തܺ௝൯�and ݎ௜௝ as follows: 

    ෠ܻ௜௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯.    (24) 

Note that, because we do not use the variance component terms in predicting ௜ܻ௝ scores, 

Equations 23 and 24 are identical although they predict ௜ܻ௝ scores for different steps in the model 

building process. This is why pseudo R2 values are nearly identical for Steps 2 and 3, although a 

comparison of Equations 8 and 12 shows that these models are quite different. The exclusion of 

variance components from the computation of pseudo R2 values explains why some results can 

be counter intuitive, such as pseudo R2 values becoming smaller when predictors are added to the 

model. Thus, this is the reason why Snijders and Bosker (2012: 109) noted that the computation 

of pseudo R2 values “now and then leads to unpleasant surprises.”  

 Table 1 also shows that the addition of the cross-product term in Step 4 leads to an 

increase of about 1% of variance explained. Once again, however, note that predicted ௜ܻ௝�scores 

are obtained using an equation that excludes terms involving variance components as follows 

(which is Equation 16 without the variance component terms ݑ଴௝ǡ ଵ௝൫ݑ ௜ܺ௝ െ തܺ௝൯, and ൅ݎ௜௝): 

  ෠ܻ௜௝ ൌ ଴଴ߛ ൅ ଴ଵ൫ߛ ௝ܹ െ ഥܹ ൯ ൅ ଵ଴൫ߛ ௜ܺ௝ െ തܺ௝൯ ൅ ଵଵ൫ߛ ௜ܺ௝ െ തܺ௝൯൫ ௝ܹ െ ഥܹ ൯   (25) 

 So, this result means that there is an additional 1% of variance explained by adding the 
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 ଵଵ coefficient to the model, but there is no information regarding variance components and theirߛ

effects on the proportion of variance explained in ௜ܻ௝ scores. A primary advantage of multilevel 

modeling is the decomposition of various sources of variance based on the level at which each 

source of variance resides. However, the computation of pseudo R2 values does not take these 

different sources of variance into account. In other words, pseudo R2 values are based on the 

fixed portion of the models only and ignore the random terms. This is why “the estimated values 

for R2 usually change only very little when random regression coefficients are included in the 

model” (Snijders & Bosker, 2012: 113). Another weakness to this approach is that there is the 

potential for one to obtain a negative pseudo R2 value, but this likely means that the model is 

misspecified (Hox, 2010; Snidjers & Bosker, 2012). In sum, although we report pseudo R2 values 

in Table 1 and our annotated R code includes the appropriate commands for all computations, it 

is important to understand the meaning and interpretation of these values specifically in the 

context of multilevel modeling. 

 In sum, each of the three options we described for reporting effect sizes and interpreting 

the practical significance of a cross-level interaction effect has advantages and disadvantages. 

So, our recommendation is that researchers report all three, together with statements about how 

each one should be interpreted. This recommendation follows the principle of full disclosure and, 

following a customer-centric approach (Aguinis et al., 2010), also allows readers the opportunity 

to interpret the meaningfulness of results themselves. Moreover, also related to the customer-

centric approach to reporting significant results (Aguinis et al., 2010), we emphasize that effect 

sizes should be interpreted within specific contexts and the fact that an effect seems small in 

terms of the proportion of variance explained, it does not automatically mean that it is 

unimportant in terms of theory or practice. 
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 Issue #10: What information should be reported based on multilevel modeling 

analyses? The field of management lacks clear reporting standards regarding multilevel 

modeling. There is wide variability in terms of the type of information that researchers choose to 

present in their tables—and how that information is presented. In contrast, the American 

Psychological Association is quite clear regarding what type of information should be reported 

when a study includes popular and long-established techniques such as multiple regression and 

ANOVA (APA Publications and Communications Board Working Group on Journal Article 

Reporting Standards, 2008). Although the 250+-page APA Publication Manual does not refer to 

multilevel modeling at all, it does include a “Sample Multilevel Model Table” (Table 5.15) that 

can be used when reporting multilevel modeling results (American Psychological Association, 

2010: 147-148). Unfortunately, the APA Publication Manual does not include any text or 

rationale for why each piece of information should be included in this table and, moreover, the 

proposed template is not sufficiently comprehensive. For example, the APA template does not 

include information on ICC, number of estimated parameters, and pseudo R2. As mentioned 

earlier, ICC information is needed for readers to understand whether the use of multilevel 

modeling was in fact justified. Including the number of estimated parameters is also useful so 

that readers can quickly and accurately understand the nature of the model. Also as mentioned 

earlier, pseudo R2 information is also a useful, albeit imperfect, effect size metric. In addition, 

our proposed table is also more comprehensive than its APA counterpart because it includes 

sample size and clear labels for each model. Overall, reporting the information included in Table 

1 is important because, absent this information, results based on multilevel modeling can be 

perceived as lacking transparency.  

 Our Table 1 can be used as a template for the type of information that needs to be 



CROSS-LEVEL INTERACTIONS                      49 
 

 
 

reported when conducting a multilevel study regardless of the particular focus—L1 direct 

effects, L2 direct effects, cross-level interactions. This table includes clear labels regarding 

which are the variables at which level and the sample size for each level as well as the 

coefficients for each effect—including their standard errors and statistical significance. This 

table also includes a crucial piece of information that is often missing from published multilevel 

research: Complete information regarding the size of each variance component. This information 

is important for several reasons. First, as statistical software programs become increasingly 

available and easy to use, there are instances in which users may not fully understand the 

resulting output. Routinely reporting variance components will allow researchers to become 

more familiar with their data, results, and interpretation of results. Second, given increasing 

concerns about ethical violations and data “massaging” (Bedeian, Taylor, & Miller, 2010), 

reporting variance components can allow a skeptical scientific audience to double check results 

and possible instances of misreporting (either by error or intention). Overall, multilevel research 

can benefit from a greater degree of standardization and openness in terms of the information 

that is reported so our recommendations will be useful in this regard. Finally, Table 1 also shows 

all of this information for each of the steps in the model building process.  

 As multilevel modeling becomes a more popular approach in management and related 

fields, it is important that results from such analyses be reported in a detailed and comprehensive 

manner. Such clear and standardized reporting serves several purposes. First, it allows readers to 

have all the necessary information to fully understand and interpret results. Second, it allows for 

the possibility that future research can replicate the results of any one particular study. Third, it 

allows for the possibility of making results more useful and accurate in terms of their future 

inclusion in subsequent literature reviews, both qualitative and quantitative (e.g., meta-analysis). 
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Finally, the availability of information regarding the variability of slopes across groups allows 

for a more precise computation of statistical power, which is particularly important in cases 

when evidence seems to suggest the absence of a cross-level interaction effect. 

CONCLUDING COMMENTS 

Understanding the interplay between variables at different levels of analysis is a key 

substantive challenge in management research (Bliese, 2000). Thus, there is an increased interest 

in multilevel models—models that include variables at more than one level of analysis. For 

example, a review by Aguinis, Pierce, Bosco, and Muslin (2009) revealed that multilevel 

modeling was the third most popular data-analytic approach in articles published in 

Organizational Research Methods from 1998 to 2007 (behind multiple regression/correlation 

and structural equation modeling). Moreover, Aguinis et al. (2009) documented that multilevel 

modeling has gained more popularity than any other data-analytic approach over this time 

period. One reason for the increased popularity is that such models allow for the assessment of 

whether relationships among entities are moderated by variables at the collective level within 

which these entities reside. Given the nature of organizational life in the twenty-first century, and 

the fact that people work in increasingly interdependent environments, shared influences 

including leadership, policies, practices, and many other processes create dependence in the data 

regardless of whether nesting is formally established through organizational structures (Cascio & 

Aguinis, 2008). Thus, data non-independence is likely to be more pervasive than typically 

acknowledged.  

Our review of questions posted on listservs suggests that researchers are mostly 

concerned with issues related to data analysis and interpretation of results. In other words, 

researchers are more concerned with and interested in answering questions about how to handle 
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the data that have been collected compared to how to plan and execute future data collection 

efforts. A similar emphasis on data analysis issues relative to research design and measurement 

issues has been documented by other reviews. For example, Aguinis et al. (2009: 106) concluded 

that “an implication of our study is that more attention is needed regarding the development of 

new as well as the improvement of existing research designs.” Although our article provides 

recommendations regarding actions researchers can take before and after data are collected, we 

believe that the most impactful decisions take place during the early stages of research including 

conceptualization, research design, and measurement. If models are misspecified (e.g., important 

L2 variables are not included in the study), research design is suboptimal (e.g., sample size is too 

small to detect existing cross-level interactions), and measures are not reliable (i.e., leading to 

measurement error), then issues around interpretation become less relevant because they can turn 

into attempts to fix unfixable design and measurement problems. In closing, drawing meaningful 

and accurate conclusions about cross-level interaction effects involves important decision points 

and we hope our article will be a useful resource in this regard. 
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FOOTNOTES 

1 As noted by an anonymous reviewer, ICC > 0 implies that within-team dependence must be 

taken into account in computing standard errors. But, ICC > 0 does not necessarily mean that 

there is a need to model the effect of W on ߚ଴௝�unless there is an interest in W as a substantive 

or control variable. However, as we describe later in our article, it is necessary to model W 

when there is an interest in a cross-level interaction between X and W. 
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Table 1 
Results of Multilevel Modeling Analysis with Illustrative Data 

 
LEVEL AND VARIABLE  

Null  
 
 
 
(Step 1) 

MODEL 
Random       Random 
Intercept      Intercept 
and Fixed     and Random 
Slope             Slope 
(Step 2)         (Step 3)           

 
Cross-level 
Interaction 
 
 
(Step 4) 

Level 1      
  Intercept (ߛ଴଴ሻ 5.720 ** 

(0.045) 
5.720 ** 
(0.038) 

5.720 ** 
(0.038) 

5.720 ** 
(0.038) 

  LMX (ߛଵ଴ሻ  0.279 ** 
(0.023) 

0.270 ** 
(0.028) 

0.269 ** 
(0.027) 

Level 2      
 Leadership Climate (ߛ଴ଵሻ  0.351 ** 

(0.055) 
0.356 ** 
(0.055) 

0.351 ** 
(0.055) 

       
Cross-level Interaction     
  LMX x Leadership Climate (ߛଵଵ)    0.104 ** 

(0.037) 
      
Variance Components     
  Within-team (L1) variance (ı2) 0.714 0.563 0.515 0.515 
  Intercept (L2) variance (Ĳ00) 0.095 0.060 0.068 0.068 
  Slope (L2) variance (Ĳ11)   0.025 0.019 
  Intercept-slope (L2) covariance (Ĳ01)   -0.003 -0.004 
Additional Information     
ICC 0.101    
-2Log likelihood (FIML) 1,637 1,478 ** 1,469 * 1,462 ** 
Number of estimated parameters 3 5 7 8 
Pseudo R2 0 .23 .23 .24 
L1 = Level 1, L2 = Level 2. L1 N = 630 and L2 N = 105. FIML: Full information maximum 
likelihood estimation. Values in parentheses are standard errors, t-statistics were computed as the 
ratio of each regression coefficient divided by its standard error. 
*  p < .05, **  p < .01.  
The data and annotated R code used for producing the results reported in this table are available 
at http://mypage.iu.edu/~haguinis. 
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Table 2 

Summary of Best-practice Recommendations for Estimating Cross-level Interaction Effects 

Using Multilevel Modeling 

--------------------------------------------------------------------------------------------------------------------- 

Pre Data Collection Recommendations 

x Recommendation #1: Defining the Cross-level Interaction Effect. Clearly and unambiguously 

identify and define the cross-level interaction effect. In the combined Level-1 and Level-2 

equation, the cross-level interaction effect is the coefficient associated with the product term 

between the Level-1 and Level-2 predictors. 

x Recommendation #2: Calculating Statistical Power. Design the multilevel study so that it 

will have sufficient statistical power to detect an existing cross-level interaction effect. Use 

the R code provided by Mathieu et al. (2012) and available at http://mypage.iu.edu/~haguinis 

to understand trade-offs in research design and measurement choices and allocate resources 

accordingly. Compute power after data collection if the cross-level interaction effect is not 

found. If power was sufficient, then one can have confidence that the effect does not exist in 

the population; if power was insufficient, then report the power value obtained and report 

that results are inconclusive because of the possibility that the population effect exists but 

was not detected in the sample. 

x Recommendation #3: Testing Hypotheses about Different Types of Moderator Variables. 

Plan to test hypotheses about cross-level interaction effects involving Level-2 continuous or 

categorical variables, but be aware of resulting differences in how to interpret the observed 

effect.  

Post Data Collection Recommendations 

x Recommendation #4: Re-scaling (i.e., Centering) Predictor Variables. In most cases, center 

the Level-1 predictor by team mean scores (i.e., group-mean centering) to improve the 
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interpretation of the cross-level interaction effect. However, theory-based considerations 

should dictate the chosen approach to re-scaling. 

x Recommendation #5: Graphing the Cross-level Interaction. Graph the cross-level interaction 

effect to understand its nature and direction. However, do not use the graph to draw 

conclusions about the size or importance of the effect. 

x Recommendation #6: Interpreting Cross-level Interaction Effects. Interpret the Level-1 

predictor or the Level-2 predictor as the moderator based on substantive and conceptual 

interests because the cross-level interaction effect is symmetrical in nature. In most cases, the 

Level-2 (or higher-level) predictor will serve the role of the moderator variable. 

x Recommendation #7: Estimating Multiple Cross-level Interaction Effects. Include all cross-

level interactions effects as part of the same model when testing more than one cross-level 

interaction effect. However, strong-theory based considerations as well as other situations 

(e.g., models may not converge, they may crash, or run out of degrees of freedom) may 

justify conducting a separate test with each interaction effect. 

x Recommendation #8: Testing Cross-level Interactions Involving Three or More Levels of 

Analysis. Conduct tests of three-way and higher-order cross-level interaction effects 

following the same procedures as those for two-way interactions, but be mindful that 

adequate sample sizes will be required for each of the levels involved. 

x Recommendation #9: Assessing Practical Significance. Compute the size of the cross-level 

interaction effect based on its predictive power as well as its explanatory power and place 

resulting effect sizes within context to understand their importance for theory and practice.  

x Recommendation #10: Reporting Results. Report complete results regarding each of the steps 

of the multilevel model building process including all coefficients and their standard errors as 

well as variance components—see Table 1 for a template. 

------------------------------------------------------------------------------------------------------------------ 
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Figure 1 

Illustration of Variance of Intercepts (߬଴଴ ) and Slopes (߬ଵଵ) across Teams 
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Figure 2 

Illustration of Within-group Variance (ߪଶ), and Level 2 Intercept Variance (߬଴଴) and Slope Variance ( ߬ଵଵ) across Teams  
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Figure 3 

Plots of Moderating Effect of L2 Variable Leadership Climate on the Relationship between L1 Variable Quality of Leader-Member 

Exchange (LMX) and L1 Variable Individual Empowerment (Panel (a): reduced Y-axis scale, Panel (b): entire Y-axis scale) 

 
 
         

 
 

(a) (b) 
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APPENDIX A 

Annotated R Code for Multilevel Analysis with Illustrative Data  

(also available at http://mypage.iu.edu/~haguinis) 

#Setting Working Directory and Reading Data File 
library('lme4.0') 
library('RLRsim') 
setwd('C:/Documents/JOM') 
exdata=read.csv('JOM.csv') 
nrow(exdata);summary(exdata) 
 
#STEP 1: Null Model 
lmm.fit1=lmer(Y ~(1|l2id),data=exdata,REML=F) 
summary(lmm.fit1) 
  
 # Compute ICC 
 iccy=VarCorr(lmm.fit1)$l2id[1,1]/(VarCorr(lmm.fit1)$l2id[1,1]+attr(VarC

orr(lmm.fit1),'sc')) 
 iccy 
 
#STEP 2: Random Intercept and Fixed Slope Model 
lmm.fit2=lmer(Y ~(1|l2id)+Xc+I(Wj-mean(Wj) ),data=exdata,REML=F) 
summary(lmm.fit2) 
  
 # Computing pseudo R-squared 
 yhat2=model.matrix(lmm.fit2)%*%fixef(lmm.fit2) 
 cor(yhat2,exdata$Y)^2 
 
#STEP 3: Random Intercept and Random Slope model 
lmm.fit3=lmer(Y ~Xc+(Xc|l2id)+I(Wj-mean(Wj) ),data=exdata,REML=F) 
summary(lmm.fit3) 
  
 # Print VC Estimates 
 VarCorr(lmm.fit3)  
 
 # Computing pseudo R-squared 
 yhat3=model.matrix(lmm.fit3)%*%fixef(lmm.fit3) 
 cor(yhat3,exdata$Y)^2 
 
 # Crainceanu & Ruppert (2004) Test of Slope Variance Component 

obs.LRT <- 2*(logLik(lmm.fit3)-logLik(lmm.fit2))[1] 
X <- lmm.fit3@X 
Z <- t(as.matrix(lmm.fit3@Zt)) 
sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z))) 
(pval <- mean(sim.LRT > obs.LRT)) 

 
# Nonparametric Bootstrap Function 
REMLVC=VarCorr(lmer(Y ~Xc+(Xc|l2id)+I(Wj-mean(Wj) 
),data=exdata,REML=T))$l2id[1:2,1:2] 
 U.R=chol(REMLVC) 
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REbootstrap=function(Us,es,X,gs){  
nj=nrow(Us) 
idk=sample(1:nj,size=nj,replace=T) 
Usk=as.matrix(Us[idk,]) 
esk=sample(es,size=length(es),replace=T) 

  S=t(Usk)%*%Usk/nj 
  U.S = chol(S) 
  A=solve(U.S)%*%U.R 
  Usk = Usk%*%A 
  datk=expand.grid(l1id = 1:6,l2id = 1:nj) 
  colnames(X)=c('one','Xc','Wjc') 
  datk=cbind(datk,X) 
  datk$yk = X%*%gs + Usk[datk$l2id,1]+Usk[datk$l2id,2]*X[,2]+esk 
  lmm.fitk=lmer(yk ~Xc+(Xc|l2id)+Wjc,data=datk,REML=F) 
  tau11k = VarCorr(lmm.fitk)$l2id[2,2] 
  tau11k 
  } 
  
  # Implementing Bootstrap 

bootks=replicate(1500,REbootstrap(Us=ranef(lmm.fit3)$l2id,es=resid(lmm.
fit3),X=model.matrix(lmm.fit3),gs=fixef(lmm.fit3))) 
quantile(bootks,probs=c(.025,.975)) 

 
#STEP 4: Cross-Level Interaction Model 
lmm.fit4=lmer(Y ~(Xc|l2id)+Xc*I(Wj-mean(Wj) ),data=exdata,REML=F) 
summary(lmm.fit4) 
 
 # Print VC Estimates 
 VarCorr(lmm.fit4) 
 
 # Computing pseudo R-squared 
 yhat4=model.matrix(lmm.fit4)%*%fixef(lmm.fit4) 
 cor(yhat4,exdata$Y)^2 
 
#Interaction Plots 
#Code creates graphs in pdf format in the same directory as the data file 
gammas=fixef(lmm.fit4) 
 
pdf('intplot.xw.pdf',width=10,height=8) 
par(mar=c(3.25,3.25,.5,.5),cex=2,bty='l',las=1,family='serif',mgp=c(1.85,.

5,0)) 
#Figure 3 Panel (a) - Full Y Scale 
Wjs=c(0-sd(exdata$Wj),0,0+sd(exdata$Wj)) 
xlb=mean(exdata$Xc)-sd(exdata$Xc);xub=mean(exdata$Xc)+sd(exdata$Xc) 
ylb=1;yub=7 
curve(0+1*x,xlb,xub,xlab='LMX',ylab='Individual 

Empowerment',lwd=2,type='n', 
ylim=c(ylb,yub)) 
for(i in 1:length(Wjs)){ 
B0j=gammas[1]+gammas[3]*Wjs[i] 
B1j=gammas[2]+gammas[4]*Wjs[i] 
curve(B0j+B1j*x,xlb,xub,add=T,xlab='LMX',ylab='Individual 

Empowerment',lwd=2,lty=i) 
}   
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labs=c(expression(W[j]==-
1*~~SD),expression(W[j]==0*~~SD),expression(W[j]==1*~~SD)) 

legend(xlb,5,legend=c("Leadership 
Climate",labs[1],labs[2],labs[3]),bty='n',lty=c(0:3)) 

 
#Figure 3 Panel (b) - Reduced Y Scale 
ylb=5;yub=6.5 
curve(0+1*x,xlb,xub,xlab='LMX',ylab='Individual 

Empowerment',lwd=2,type='n', 
ylim=c(ylb,yub)) 
for(i in 1:length(Wjs)){ 
B0j=gammas[1]+gammas[3]*Wjs[i] 
B1j=gammas[2]+gammas[4]*Wjs[i] 
curve(B0j+B1j*x,xlb,xub,add=T,xlab='LMX',ylab='Individual 

Empowerment',lwd=2,lty=i) 
} 
labs=c(expression(W[j]==-

1*~~SD),expression(W[j]==0*~~SD),expression(W[j]==1*~~SD)) 
legend(xlb,6.5,legend=c("Leadership 

Climate",labs[1],labs[2],labs[3]),bty='n',lty=c(0:3)) 
dev.off() 
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APPENDIX B 

Annotated R Code for Power Analysis from Mathieu et al. (2012) using this Article’s Illustrative 
Data  

(also available at http://mypage.iu.edu/~haguinis) 
 
l2n = 105  #Level-2 sample size 
l1n = 6  #Average Level-1 sample size 
iccx = .12  #ICC1 for X 
g00 = 0  #Intercept for B0j equation (Level-1 intercept) 
g01 = 0  #Direct cross-level effect of average Xj on Y 
g02 = 0  #Direct cross-level effect of W on Y 
g03 = 0  #Between-group interaction effect between W and Xj on Y 
g10 = 0.4  #Intercept for B1j equation (Level-1 effect of X on Y) 
g11 = 0.15  #Cross-level interaction effect 
vu0j = 0.01  #Variance component for intercept 
vu1j = 0.1  #SD of Level-1 slopes 
vresid = 0.8 #Variance component for residual, within variance 
alpha = .05  #Rejection level 
REPS = 1000  #Number of Monte Carlo Replications, 1000 recommended 
 
hlmmmr <- function(iccx,l2n,l1n,g00,g01,g02,g03,g10,g11,vu0j,vu1j,alpha){ 
require(lme4.0) 
Wj = rnorm(l2n, 0, sd=1) 
Xbarj = rnorm(l2n, 0, sd=sqrt(iccx)) ## Level-2 effects on x 
b0 = g00 + g01*Xbarj+ g02*Wj + g03*Xbarj*Wj + rnorm(l2n,0,sd=sqrt(vu0j)) 
b1 = g10 + g11*Wj + rnorm(l2n,0,sd=sqrt(vu1j)) 
dat=expand.grid(l1id = 1:l1n,l2id = 1:l2n) 
dat$X=rnorm(l1n*l2n,0,sd=sqrt(1-iccx))+Xbarj[dat[,2]] 
dat$Xbarj=Xbarj[dat[,2]] 
dat$Wj=Wj[dat[,2]] 
dat$Y <- b0[dat$l2id]+ b1[dat$l2id]*(dat$X-
dat$Xbarj)+rnorm(l1n*l2n,0,sd=sqrt(vresid)) 
dat$Xc=(dat$X - Xbarj[dat[,2]]) 
lmm.fit<- lmer(Y ~ Xc+Xbarj+Wj+Xbarj:Wj+Xc:Wj+(Xc|l2id),data=dat) 
fe.g <- fixef(lmm.fit) 
fe.se <- sqrt(diag(vcov(lmm.fit))) 
ifelse(abs(fe.g[6]/fe.se[6])>qt(1-alpha/2,l2n-4),1,0) 
} 
simout=replicate(REPS,hlmmmr(iccx,l2n,l1n,g00,g01,g02,g03,g10,g11,vu0j,vu1
j,alpha)) 
powerEST=mean(simout) 
powerEST 


