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ABSTRACT Theories hypothesizing interactions between a categorical and
one or more continuous variables are common in personality research. Tra-
ditionally, such hypotheses have been tested using nonoptimal adaptations of
analysis of variance (ANOVA). This article describes an alternative multiple
regression-based approach that has greater power and protects against spurious
conclusions concerning the impact of individual predictors on the outcome
in the presence of interactions. We discuss the structuring of the regression
equation, the selection of a coding system for the categorical variable, and the
importance of centering the continuous variable. We present in detail the in-
terpretation of the effects of both individual predictors and their interactions as
a function of the coding system selected for the categorical variable. We illus-
trate two- and three-dimensional graphical displays of the results and present
methods for conducting post hoc tests following a significant interaction. The
application of multiple regression techniques is illustrated through the analy-
sis of two data sets. We show how multiple regression can produce all of the
information provided by traditional but less optimal ANOVA procedures.
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Personality researchers are frequently faced with the analysis of designs
involving both categorical and continuous variables. Most commonly,
these issues arise in the context of the “experimental personality”
(aptitude-treatment) design in which each subject is initially measured
on one or more individual difference measures. Subjects are then ran-
domly assigned to treatments within an experiment and their responses
on the outcome variable are measured (see Atkinson & Feather, 1966;
Kernis, Cornell, Sun, Berry, & Harlow, 1993; Rotter & Mulry, 1965, for
examples). Interactionist theories predict that situational factors modify
the relation between personality traits and behavior (Krahé, 1992; Mag-
nusson & Endler, 1977; Snyder & Ickes, 1985). Similar analytic issues
also arise in designs in which natural categories like gender are expected
to interact with continuous variables in predicting an outcome.

Traditionally, the data from such designs were analyzed using the
familiar framework of analysis of variance (ANOVA). To illustrate,
consider the design and analysis used by Rotter and Mulry (1965). In
their design, each subject’s locus of control was measured using Rotter’s
(1966) I-E scale, the description of the nature of the task (chance-
vs. skill-based) was manipulated, and the subject’s decision time on a
pattern-matching task was recorded as the outcome variable. The data
from the continuous, individual difference variable (locus of control)
were divided at the median into a “high” (internal) and “low” (exter-
nal) group. The data on the outcome (dependent) variable of decision
time were then analyzed using a 2 x 2 (Task Description x Locus of
Control) ANOVA, yielding tests of the main effect of locus of control,
the main effect of task description, and the Locus of Control x Task
Description interaction, each with 1 degree of freedom in the numera-
tor. Well-developed prescriptions within the ANOVA approach allowed
for the interpretation of the effects, graphical presentation of the re-
sults, and post hoc probing of significant interactions through tests of
simple effects (Winer, 1971; Winer, Brown, & Michels, 1991). We will
term this approach “ANOVA with cutpoints.”

Unfortunately, a number of problems have become evident in recent
years with the application of the traditional ANOVA with cutpoints ap-
proach. First, Cohen (1983) illustrated how artificially dichotomizing a
continuous variable greatly reduces the power of statistical tests. In the
experimental personality design, this problem affects both the tests of
the individual difference variable(s) and the interaction(s) of the indi-
vidual difference and manipulated variables. This problem is particu-
larly important given the generally low power of tests of interactions
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involving continuous variables (Aiken & West, 1991; Chaplin, 1991;
Cronbach & Snow, 1977; McClelland & Judd, 1993; Stone-Romero &
Anderson, 1994). Second, Maxwell and Delany (1993) and Pitts and
West (1995) have shown that an even more serious problem emerges
in designs in which there are two or more correlated individual differ-
ence variables: Statistically significant but completely spurious effects
of the individual difference variables may be detected, even when the
individual difference variables, in fact, have no relation to the outcome
variable. Other problems also exist, notably the very limited ability of
the ANOVA with cutpoints approach to detect model misspecification
(e.g., curvilinear effects of continuous variables; see Aiken & West,
1991, chaps. 5 and 9), but will not be the focus of the presentation here.

Because of these problems, the traditional ANOVA with cutpoints
approach is being increasingly superseded by a multiple regression-
based approach, often termed moderated multiple regression (Aiken &
West, 1991; Jaccard, Turrisi, & Wan, 1990; Judd & McClelland, 1989;
Saunders, 1956). As originally outlined by Cohen (1968; see also Cohen
& Cohen, 1983), any combination of continuous and categorical predic-
tor variables can be analyzed within a multiple regression framework.
Categorical variables are represented through one or more code vari-
ables that assign a unique value to each group (e.g., dummy codes such
as male = 0, female = 1, or unweighted effects codes such as male
= —1, female = +1). Interactions are represented as the products of
individual predictors (e.g., the product XW of two predictors X and W).
Curvilinear relations are represented through higher order functions of
predictors in the regression equation (e.g., the square of a predictor, X2,
for a U-shaped relationship).

The purpose of this article is to inform readers about the use of the
multiple regression approach, particularly as it applies to the analy-
sis of experimental personality designs. We extend the work of Aiken
and West (1991) by focusing our presentation on designs involving two
individual difference variables and one manipulated situational vari-
able. Such designs are important in both classic and contemporary work
in personality. For example, Atkinson and Feather’s (1966) theory of
achievement motivation predicts a complex interaction among need for
achievement (continuous), fear of failure (continuous), and task success
versus failure (experimentally manipulated) in determining future per-
formance. Recent work on self-esteem (e.g., Campbell, 1993; Kernis
etal., 1993) predicts interactions among a person’s chronic level of self-
esteem, the stability of their level of self-esteem, and situational factors
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in determining the subject’s responses. The methods presented in this
article can be generalized both upward to still more complex designs
involving additional manipulated or measured independent variables, as
well as downward to the simpler, classic experimental personality de-
sign involving only one manipulated and measured variable (see Aiken
& West, 1991, chap. 7). Although our focus will be on the experimental
personality design, we will also consider designs in which the cate-
gorical predictor represents naturally occurring (e.g., gender) rather
than manipulated groups. Space considerations limit our presentation
to between-subjects designs in which each subject is exposed to a single
treatment condition and is measured only once on the outcome variable.

In this article we present a step by step approach to the analysis of
experimental personality designs.

1. We begin by exploring how to structure regression equations con-
taining two continuous predictors that interact with a two-group and
then a three-group categorical variable.

2. We show several potential systems of code variables for represent-
ing the categorical independent variable in regression equations.

3. We discuss the importance of centering (i.e., putting in deviation
score form) continuous variables when interactions occur in regression
equations.

4. We explain how to conduct omnibus tests of the categorical vari-
able itself and of interaction effects involving the categorical variable.

We then present two example analyses.

5. Example 1 includes a categorical variable with three levels and
illustrates the general interpretation of regression coefficients asso-
ciated with each of the systems of creating code variables. The discus-
sion of Example 1 also considers issues in selecting among the coding
systems.

6. Example 2, involving real data, illustrates simplifications that occur
in the regression model when there are only two levels of the cate-
gorical variable. Example 2 also introduces methods for presenting the
results using two- and three-dimensional graphical displays and for post
hoc testing of significant interactions.

Our goal in this article is to provide a comprehensive set of prescrip-
tions for the analysis, interpretation, graphical display, and post hoc
probing of significant interactions within the multiple regression frame-
work. These prescriptions provide parallels to all of the information
available in ANOVA with categorical variables.
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Structuring the Regression Equation

Complete factorial ANOVA models, with which psychologists are most
familiar, are structured so that all main effects and two-way interactions
involved in a three-way interaction are included in the model. With
factors A, B, and C, we have the main effect terms A, B, and C; the
two-way interactions AB, AC, BC; and the three-way interaction ABC.
Regression models involving interactions must be structured in the
same manner as are complete factorial ANOVA models. Each variable
included in the highest order interaction must serve as a separate pre-
dictor, and all possible combinations of the individual predictors that
are contained in the highest order interaction must also serve as predic-
tors in the regression equation. Such regression equations are described
as being hierarchically well formulated (Peixoto, 1987).

First, consider a regression equation with continuous predictors X
and W, and a two-group categorical variable C (e.g., gender, represented
using unweighted effect codes of —1 = male and +1 = female):

Y = by + b X + bW + b3C + byXW + bsXC
+ bWC + b;XWC (1)

The correspondence between Equation 1 and the familiar three-factor
ANOVA model is apparent. The highest order interaction is the three-
way XWC interaction. The lower order interactions include three two-
way interactions: between the continuous variables X and W, between
continuous variable X and the categorical (code) variable C, and be-
tween continuous variable W and categorical variable C. The first-order
effects of each predictor, X, W, and C in this illustration, are analogous
to main effects in ANOVA. But recall that most ANOVA texts con-
tain admonitions against interpreting main effects in the presence of
significant interactions. For this reason, we will refer to the effects of
individual predictors in regression equations containing interactions as
first-order effects (rather than as main effects) throughout this article.
Later, we will develop interpretations of first-order effects as “average”
or “conditional” effects, interpretations that remain useful even in the
presence of higher order interactions.

Second, consider a case in which the categorical variable has G = 3
levels. When the categorical variable has G > 2 levels, then more than
one code variable must be built into the regression equation to fully
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represent the categorical variable. With G groups in all, we need (G—1)
code variables. For our second case, we need two code variables, which
we will name C; and G, to represent the three levels of the cate-
gorical variable. These two code variables, C; and C,, taken together
represent the first-order effect of the categorical variable. To form the
interaction of the categorical variable with a continuous variable X, two
cross-product terms are required: XC; and XC,. These two terms taken
together represent the two-way interaction of X by the categorical vari-
able. Otherwise stated, C; and C, form a set that represents the three
groups; both code variables must be included in the equation to repre-
sent the first-order effect of the group variable and its interaction with
other variables. A full regression equation containing the interaction of
continuous variables X and W with a three-level categorical variable
would be structured as in Equation 2 below:

¥ = by + 51X + byW + b3Cy + bsCy + bsXW + beXC,
+ b1 XCy + bgWC + bWy + b1oXWCy + b | XW(C, (2)

We will refer to Equation 2 frequently throughout this article.

The Categorical Independent Variable:
Choice of Coding System

Once the regression equation has been structured, the next step in the
analysis is to choose a coding system with which to represent the cate-
gorical variable. We require a set of (G — 1) code variables to represent
the differences among the G groups in a regression analysis. In prac-
tice, personality researchers will typically mountonly G =2 0or G =3
different manipulations (or use a similarly small number of natural cate-
gories) and so will require only one or two code variables, respectively.
Each of the coding systems leads to a different interpretation that may
or may not be optimal, depending on the regression model being con-
sidered and the questions being posed by the researcher (Aiken & West,
1991; Cohen & Cohen, 1983; Pedhazur, 1982; Serlin & Levin, 1985;
Suits, 1984).

Coding systems consist of numerical values assigned to members
of different levels of the categorical variable (e.g., female = 1; male
= 0). Two fundamental questions should be addressed for each coding
system:

(a) What is the meaning of a value of O for each code variable? As
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we will clarify later in this article, when a regression equation con-
tains interactions, each first-order effect and lower order interaction
represents the regression of the dependent variable on the predictor or
interaction among predictors at the values of O for all remaining pre-
dictors in the equation. Thus, the meaning of 0 for each code variable
will have important implications for the interpretation of the regression
coefficients.

(b) What is the meaning of a 1-unit change in the code variable?
Again, as we will clarify below, the unstandardized regression coeffi-
cients for the code variables provide direct estimates of the difference
between a mean or slope associated with a specific treatment group and
the value represented by O (typically a grand mean or the mean of a
comparison group) for that code variable.

Throughout this article, we use unstandardized regression coeffi-
cients because they have a straightforward interpretation within the
coding systems we will describe for categorical variables. In regression
equations without interactions, standardized coefficients are interpreted
in terms of z scores, which rarely have a useful interpretation for cate-
gorical variables. In standardized equations including interactions, the
coefficients for the interaction terms are not properly standardized and
are therefore not interpretable (Aiken & West, 1991, pp. 40-47; Fried-
rich, 1982).

Coding systems for categorical variables

We consider four coding systems for categorical variables: dummy
codes, unweighted effect codes, weighted effect codes, and contrast
codes.

Dummy codes. The top section (A) of Table 1 illustrates three versions
of the dummy variable coding system for the three-group case. In this
familiar system, a comparison group (Group G) is designated and is
assigned a value of O for each code variable. The choice of the compari-
son group is statistically arbitrary; however, there are three practical
considerations that should guide this choice: (a) The comparison group
should in some way serve as a base group in the design (e.g., a con-
trol group; a standard treatment; the group expected to score lowest or
highest on the dependent variable); (b) the comparison group should
be well defined (i.e., not a wastebasket category such as “other” for
religion); and (c) the comparison group ideally should rot have a very



Illustration ot Coding Systems for Categorical Variables

Group 1 as Base

Group 2 as Base

Group 3 as Base

(A) Dummy codes C 1 C2 Cl Cz C 1 C2
Group 1 0 1 0 1 0
Group 2 1 0 0 0 0 1
Group 3 1 0 1 0 0
(B) Unweighted effects codes C, Cy
Group 1 1
Group 2
Group 3 -1 -1
General form Illustration
(C) Weighted effects codes? G C; C Cy
Group 1 1 0 1 0
Group 2 0 1 0 1
Group 3 —ny/m3 —ny/n3 —60/120 —220/120
(D) Contrast codes® G G
Group 1 +1/3 -1/2
Group 2 +1/3 +1/2
Group 3 -2/3 0

a. ny, np, and n3 are the sample sizes in the corresponding groups. To illustrate, the group sizes in Exampie 1 are 60, 220, and 120, respectively.

b. The two contrast codes depicted compare: the unweighted mean of Groups 1 and 2 with the mean of Group 3; the mean of Group 1 with the mean

of Group 2.
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small sample size relative to the other groups (see Hardy, 1993). For the
presentation below, we chose Group 3 as our comparison group and use
the set of dummy codes presented in the third column of Table 1(A).

Each other group in turn is given a value of 1 on the code variable that
will contrast it with the comparison group and a value of 0 otherwise.
As illustrated in Table 1(A) using Group 3 as the base, C; contrasts
Group 1 with Comparison Group 3 and C; contrasts Group 2 with Com-
parison Group 3. All (G — 1) code variables must be included in the
regression equation to represent the overall treatment effect. If some of
a set of code variables representing the treatment are not included in
the regression equation, the interpretation of the regression coefficients
changes, often in a dramatic manner (see Serlin & Levin, 1985). In the
regression equation, each code variable contributes 1 degree of freedom
(df) as a predictor. The set of (G — 1) code variables have (G — 1) df
in all, completely equivalent to the (G — 1) degrees of freedom for the
main effect of a categorical variable with G levels in ANOVA.

Consider Equation 3 below, a simple regression equation comparing
the means of three treatment groups,

Y = by +b,C1 + by, (3)

In this equation, ¥ is the predicted value of the outcome variable, by is
the intercept, b, is the coefficient for the first dummy code (C;), and
b, is the regression coefficient for the second dummy code (C;). Each
of these regression coefficients is unstandardized. If we substitute the
values of the dummy codes corresponding to each group into Equation
(3), we find:

GI‘Ollp 1: ? = bg + b](l) + b2(0) =by+b; =M
Group 2: ¥ = by + b;(0) + b,(1) = by + by = M,
Group 3: ¥ = by + b;(0) + b2(0) = by =M,
(Group 3 is the comparison group)

Thus, in Equation 3 when C; = 0 and C; = 0, Y , the predicted value
of the outcome variable, equals by, the regression intercept, which also
equals M, the mean of the comparison group. The same ¥ value is
predicted for all subjects in the comparison group. Correspondingly, a
1-unit change on C; (i.e., a change of the value of C; from 0 for the
comparison group to a value of 1 for Group 1) represents the differ-
ence in the value of the Group 1 mean and the comparison group mean
on the outcome variable. A 1-unit change on C; is associated with the



10 West et al.

difference in the means of Group 2 and the comparison group on the
outcome variable.

Other dummy variable-like coding systems can be developed that as-
sign numbers other than 0 to the comparison group and numbers other
than 1 to represent group membership (e.g., C; = 1 for male; C;, = 2
for female). Such coding systems produce similar results to standard
dummy coding in regression models without interactions. However,
some can produce results that are far more difficult to interpret with
regression models involving interactions because the meaning of the
regression coefficients changes. Such coding systems are not recom-
mended.

Unweighted effects codes. In unweighted effects codes, a base group is
arbitrarily designated and is assigned a value of —1 for each code. Each
of the other treatment groups is assigned a value of +1 for one code
and a value of 0 for all other codes. This coding system is illustrated in
the second section of Table 1 for our three-group example, arbitrarily
designating Group 3 as the base group. Substituting the values of the un-
weighted effect codes corresponding to each group into the regression
equation, we find:

Group 1: I:/=b0+b1(l) +b(0) =bo+b =M,
Group 2: ¥=bo+b1(0) +b(1) =bo+b =M,
Group 3: Y = by + b1(—1) + ba(~1) =bo— by — b, = M;

In this coding system, b, represents the unweighted grand mean of all
of the groups [M, = (My + M, + M3)/3]. In fact, all regression co-
efficients for individual group codes represent discrepancies from the
unweighted mean when unweighted effects codes are used. The group
coded [—1, —1] is not a comparison group against which other groups
are compared in this coding scheme. b, represents the change in Y asso-
ciated with a 1-unit change on C,, which equals the difference between
the mean of Group 1 and the unweighted grand mean. b, represents the
change in ¥ associated with a 1-unit change on C,, which equals the dif-
ference between the mean of Group 2 and the unweighted grand mean.
The difference between the Group 3 mean and the unweighted grand
mean is computed from b; and b, as —(b; + by).

Weighted effects codes. Weighted effects codes (Darlington, 1990; Winer
et al., 1991) follow the same logic as unweighted effects codes except
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that the size of each treatment group is taken into consideration. To
illustrate, consider a study in which there are three groups that have
sample sizes of n; = 60, ny = 220, and n3 = 120. Once again, we will
arbitrarily designate Group 3 as the base group. The values of C; and
C; follow the same pattern as we observed for unweighted effect codes.
However, the values of the code are adjusted (weighted) for Group 3 to
reflect the different sample sizes of each of the groups. The left column
of the weighted effects codes section (C) of Table 1 presents the general
form of weighted effects codes for the three-group case; the right col-
umn of Table 1(C) presents the specific values of the codes for the first
illustrative study (Example 1) to be described below. The difference in
sample sizes is represented in the code of the group that receives the
negative value. For each code, this value is minus the ratio of the size of
the group coded 1 and the size of the group that would have been coded
—1 using unweighted effects codes. Note that when sample sizes are
equal across groups, n; = n, = n3, the codes for Group 3 simplify to
[—1, —1]. Under these conditions, weighted effects codes are identical
to unweighted effects codes and produce identical results.

Using weighted effects codes, b represents the weighted grand mean
(M,,) of the group means, by = M,, = [(n;M; + oM, + n3Msz)/(ng +
ny + n3)]. Each regression coefficient in this system represents the dif-
ference between the mean of a specified group and the weighted grand
mean. b, represents the change in Y for a 1-unit change on C;, which
is the difference between the Group ! mean and the weighted grand
mean. b, represents the change in Y for a 1-unit change on C;, which
is the difference between the Group 2 mean and the weighted grand
mean. The value [(—n; /n3)b; + (—ny/n3)b,] is the difference between
the Group 3 mean and the weighted grand mean.

Contrast codes. Contrast codes (Judd & McClelland, 1989; Rosenthal
& Rosnow, 1985) are the familiar a priori comparisons discussed in
traditional ANOVA texts (e.g., Kirk, 1995; Winer et al., 1991). They are
used if the researcher has specific, a priori hypotheses that involve lin-
ear combinations of two (or more) treatment group means or slopes. As
one example, imagine a researcher has a control group (Group 3) and
two treatment groups (Group 1, Group 2). The researcher predicts that
(a) the mean of the two treatment groups combined will differ from the
mean of the control group and (b) the two treatment groups will not
themselves differ. The coding system represented in the bottom section
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(D) of Table 1 captures these two contrasts.’ by is the unweighted grand
mean of the three groups. b; represents the value of a 1-unit change
on C;, which represents the difference between the Group 3 (control)
mean and the unweighted mean of Groups 1 and 2 (treatment). The test
of b, represents the test of hypothesis (a). b, represents the value of a
1-unit change on C,, which represents the difference between the mean
of Group 1 and the mean of Group 2. The test of b, represents the test
of hypothesis (b).

The specific contrasts selected for comparison depend on the re-
searcher’s a priori hypotheses. Three rules maximize the interpretability
of the contrasts. First, the sum of the weights for each code vari-
able must equal 0. For example, for the first code variable [(+1/3) +
(+1/3) + (=2/3)] = 0. Second, the difference between the value
of the positive weights and negative weights should equal 1 (e.g.,
[(+1/3) — (—2/3) = 1]. This rule ensures that the regression coeffi-
cient corresponding to the contrast will directly provide the value of
the difference between the unweighted means of the groups involved in
the contrast (rather than the value of interest multiplied by a constant).
Third, to achieve orthogonal contrasts that account for nonoverlapping
variance in the dependent variable when the sample sizes are equal
in each group, the sum of the products of each pair of codes should
be 0. For example, in Table 1(D), the product of the two codes is
(+1/3)(=1/2) = (—1/6) for Group 1, (+1/3)(+1/2) = (+1/6) for
Group 2, and (—2/3)(0) = 0 for Group 3. The sum of these product
terms (—1/6) + (+1/6) + (0) = 0. These three rules lead to directly
interpretable contrasts whether or not the sample size is equal across
groups. However, the contrasts will be orthogonal only when the group
sizes are equal.

Contrast analysis offers a useful approach when the researcher has
a set of strong a priori predictions. Rosenthal and Rosnow (1985) dis-
cuss the philosophy of this general approach and describe its use in
the ANOVA context. Judd and McClelland (1989) outline the use of
contrast codes in multiple regression analysis, particularly as applied to

1. The contrast codes described here are unweighted in that differences in group sizes
are not taken into account. Weighted contrast codes have also been defined (see, e.g.,
Kirk, 1995, pp. 761-764; Serlin & Levin, 1985). The criteria for choosing unweighted
versus weighted contrast codes parallel those for choosing unweighted versus weighted
effect codes discussed later in the article. In general, unweighted contrast codes will
typically be more useful for experimental personality designs in which the group
variable is manipulated.
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designs involving experimental manipulations. Serlin and Levin (1985)
present a very general matrix-based method for deriving codes that
provide weighted or unweighted tests for any set of contrasts of interest.

Comments on coding systems

Each of the coding systems represents a different way of partitioning
the information from the G groups. The value of the test statistic of the 1
degree of freedom tests associated with the corresponding terms in each
coding system will generally differ when G > 2. The results from one
coding system can be converted into those of another. For example, in
our illustration of dummy codes, the test of b; in Equation 3 represents
the difference between the means of Groups 1 and 3 (M, — M3). For
unweighted effects codes, (2b; + b,) represents the difference between
the means of Groups 1 and 3. However, it is far simpler to choose the
coding system that provides direct answers to the researcher’s specific
question than to choose one that requires additional, perhaps complex
calculations to answer the question.”

Continuous Independent Variables: Centering

In regression equations containing interactions, each regression coeffi-
cient represents the regression of the dependent variable on the specific
variable at the value of O on all other variables. Thus, the meaning of
the value O on each continuous variable must be considered.

Aiken and West (1991, chap. 3) present a detailed discussion of the
advantages of centering continuous variables in regression equations.
Centering simply means converting each continuous variable to devia-
tion score form, making the mean of the variable 0 while preserving
the units of the scale. Centered X is calculated as:

X = Xraw — Mean(X)

Centering continuous variables has several advantages that are of par-
ticular importance in the analysis of regression models involving inter-
actions.

First, psychological scales rarely have meaningful O points. Even on

2. Aiken and West (1991, pp. 24-26) present a general method that can be applied to
test any linear combination of coefficients in a regression equation.
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well-developed individual difference measures like IQ, a score of 0 does
not have a clear meaning. Regression coefficients in complex models
involving interactions are conditional effects. Conditional effects refer
to effects that hold only at specific values of other predictors in the
equation. First-order effects (e.g., the regression coefficient for con-
tinuous variable X ) are interpreted when all other continuous variables
and codes for categorical variables have a value of 0. Lower order
interactions (e.g., the regression coefficient for the interaction between
continuous X and continuous W in a model containing three-way inter-
actions) are interpreted at a value of O for the third variable. Centering
the continuous variables ensures that the interpretation of effects will
occur at a meaningful value of the continuous variable (i.e., the mean,
which has a value of 0 with centered variables).

Second, centering the continuous variables yields the regression
model that is most analogous to the familiar ANOVA model. In
ANOVA, we interpret a main effect as the constant effect of one factor
that holds across all levels of other factors. Consider an equal ns two-
factor ANOVA in which the A main effect and the AB interaction are
both significant. The significance of the AB interaction indicates that
the amount of difference between the levels of A depends upon the
particular level of factor B at which the difference among levels of A
is considered. The A main effect no longer represents a constant effect;
rather it represents the average amount of discrepancy among the levels
of factor A taken across all levels of B. Equivalently, the A main effect
represents the amount of discrepancy among the levels of factor A at
the mean of factor B. When the AB interaction (or any other interaction
involving A) is significant, then the A main effect is conditional upon
the value of the other factors at which it is interpreted; it is no longer the
constant effect of factor A that holds regardless of the level of factor B.

In multiple regression analysis precisely the same change in interpre-
tation of first-order effects occurs when the first-order effect is included
in an interaction. In an equation containing a group variable G and a
continuous variable X, if the continuous variable and the group vari-
able interact, the amount of difference among the groups depends upon
the particular value of the continuous variable. When the continuous
variable X has been centered, the interpretation of the first-order effect
of the group is as the average effect of the group variable across all
values of the continuous variable. Alternatively, with centered X, the
effect of the group variable G can be interpreted as the effect of the
group variable at the mean of X, or at the value of 0 on the X variable
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(since X is centered, its mean is 0). In sum, the interpretations of the
effects of first-order variables that also are contained in interactions are
identical in ANOVA and multiple regression if the predictors have been
centered.’

If the continuous variable has not been centered, then the interpreta-
tion of the first-order effect of the group variable is different. The first-
order effect still represents the amount of difference among the groups
at the value of 0 of the continuous variable X; however, 0 is no longer
at the mean of X. In fact, 0 may not even exist on the scale, rendering
the interpretation of the group effect psychologically meaningless (e.g.,
if X is a continuous 7-point Likert scale with a range of 1 to 7). This
difference in the meaning of the value of 0 at which regression coeffi-
cients are interpreted yields disconcerting changes in the magnitude of
regression coefficients as predictor variables are rescaled. The regres-
sion coefficient for a first-order term or lower order interaction may
change from highly negative to highly positive, from significant to non-
significant. The one exception is that the regression coefficient for the
highest order term(s) in the equation remains constant across any linear
rescaling of the continuous predictors. For example, in Equation 1 the
term b;XWC remains constant and in Equation 2 the terms b, XWC,
and b1 XWC, remain constant.

To illustrate these points, consider an evaluation of a school lunch
program relative to a no treatment control that shows an interaction
with family income: The poorest children will likely show larger gains
in health from the program relative to the better-off children, who show
more modest gains. If income has been centered, then the first-order
effect of the lunch program can be interpreted as the average effect of
the lunch program across all children in this sample. It can also be in-
terpreted as the amount of benefit a child at the mean level of family
income in this sample of poor families could expect from the program,
often a useful value. In contrast, if income has not been centered, then
the first-order effect of the lunch program predicts how much benefit
children from families with $0 income could expect from the program.
Assuming that all sources, including welfare, have been included in the
computation of income, this latter value is unlikely to be useful.

Third, many users of multiple regression with interactions have ob-
served a disconcerting result, namely that correlations between first-

3. This statement does not hold for dummy codes since they are evaluated relative to
the comparison group rather than to the mean of the groups.
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order predictors (e.g., X and Z) and interactions containing those pre-
dictors (e.g., XZ) can change dramatically depending on how X and
Z are scaled. If X and Z are centered, then the correlation of X and
XZ or Z and XZ will typically be low. In contrast, these correlations
will often be high if X and Z are uncentered. Marquardt (1980) has
distinguished between two sources of multicollinearity in regression
equations with interactions. Essential ill-conditioning results from true
relationships between variables in the population (e.g., between intelli-
gence and authoritarianism). Nonessential ill-conditioning results from
relations between the means of the variables. Centering reduces multi-
collinearity because it eliminates nonessential (but not essential) ill-
conditioning. To illustrate, consider the variable X with five scores: 1,
2,3, 4, 5. Squaring these scores yields X2: 1, 4,9, 16, 25. In a regression
equation containing both X and X? terms, these two terms will often
be highly correlated, r = .98 in the present illustration. However, if X
and X2 are centered, the correlation between these terms is expected
to be dramatically reduced. In our illustration, mean(X) = 3 so that
the centered X scores are —2, —1, 0, +1, +2 and centered X? is 4,
1, 0, 1, 4. Recalculation of the correlation between centered X and X?
yields r = .00. This advantage is particularly important in regression
equations containing several lower order interactions of interest.*

Centering does have a disadvantage in meta-analytic and other con-
texts in which comparisons of regression coefficients are made across
studies. To the extent the sample means differ across studies, it can
be misleading to compare lower order regression coefficients even if
identical measures, regression equations, and coding systems are used
in each study. Note, however, that the highest order interaction is not
affected by this problem.

Testing Overall Etfects: Multiple df Tests

In traditional ANOVA, we have one overall test of each main effect,
each two-way interaction, etc.’ In a design with a categorical variable
having G = 3 levels, the test of the significance of the categorical vari-
able has G — 1 = 2 degrees of freedom. When the overall test of the

4. With modern computer programs, multicollinearity aimost never has an effect on
the estimate of the standard error of the highest order interaction,

5. When researchers have several strong a priori hypotheses, some authors (e.g., Judd
& McClelland, 1989; Rosenthal & Rosnow, 1985) recommend using contrast codes and
directly reporting the 1 df test of each hypothesis.
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G = 3 group categorical variable is translated into multiple regression
analysis, the test of significance of the categorical variable is actually
an omnibus test of whether the b;C; plus the b,C, terms of Equation 2
taken together contribute significant prediction to the outcome, over
and above all other predictors in the equation. This test of the joint con-
tribution of the two predictors C; and C, that represent the categorical
variable has 2 degrees of freedom, just as in ANOVA.

To illustrate, consider testing the joint contribution of the two codes
carrying the group effect in Equation 2, which is reproduced below:

Y = by + 51X + byW + b3Cy + baCs + bsXW + beXC,
+ b1 XCy + bgWC 4+ bWy + b1gXWC + b1 XWC, (2)

Several reduced models must be estimated that omit the terms of inter-
est. These reduced models, in turn, are each compared with the full
regression model given in Equation 2.

Reduced model to test the first-order effect of group,

Y =bo+ b X+ bW + bsXW + beXC,
+ b7 XCo + bWy + bW, + b1gXWCy + b1 XWC, (4)

Reduced model to test the Group x X interaction,

Y =bg + b1X + baW + b3Cy + byC + bsX W+
bsWCy + bgWCy + b)oXWCy + b1 XWC, (5)

Reduced model to test the Group x W interaction,

Y = by + 51X + bW + b3C; + byCy + bsXW + beXCy
+ b XCp + bioXWC, + b1 XWC(C, (6)

Reduced model to test the Group x X x W interaction,

Y = bo + bi1X + bW + b3Cy + baCs + bsXW + beXC;
+ b1 XCr + bsWCy + boWC, (7)
Following Cohen and Cohen (1983, chap. 4), the R? from the full model

is compared with the R? from the reduced model using Equation 8
(below) to test the gain in prediction, ’
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= (RZu — Rx?educe )/ m
S _f;;%uu)/(n —dk - 1) (8)

with df = m, n — k — 1. In this equation, RZ,, is the squared mul-
tiple correlation from the full model, R,  is the squared multiple
correlation from the reduced model, » is the number of subjects, k is
the number of predictors in the full regression model not including the
intercept (here, 11), and m is the number of terms in the set being tested
(here, 2). Thus, reduced Equation 4 is compared with full Equation 2
to test the group effect; Equation 5 is compared with Equation 2 to test
the Group x X interaction; Equation 6 is compared with Equation 2
to test the Group x W interaction; and Equation 7 is compared with
Equation 2 to test the Group x X x W interaction. These tests can be
easily conducted using hierarchical entry procedures in programs such
as SPSS REGRESSION or SAS PROC REG. They are also calculated
directly by general linear model programs such as SAS PROC GLM.
Note that the outcomes of these tests are independent of the choice of
coding system for the categorical variable (i.e., all four coding systems
lead to the same results).

Example 1: Simulated Data

To provide our first example, the SAS 5.18 random number generator
was used to create an artificial data set. Two continuous variables (X and
W) representing measured individual difference variables were each
constructed to have mean = 0 (centered) and to be normally distrib-
uted. X and W were also constructed to be highly correlated (r = .53).
Three groups were then created (n; = 60, n; = 220, n3 = 120). Such
discrepant sample sizes are most often found when the groups repre-
sent natural categories or experimental treatments that differ widely
in cost or difficulty of implementation. Different regression equations
were generated in each of the three groups. The difference in the regres-
sion coeflicients for the XW terms among the three groups produces a
three-way interaction in the population.

¥ = 07730 +3.1393X — 2.1514W — 2.1639XW in Group1 (9)
P = 1.1869 —0.5477X — 0.2865W + 0.9912XW in Group 2 (10)
P = —3.3034 — 0.8533X + 2.2922W + 1.0602XW in Group 3 (11)
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Normally distributed random error of measurement was added to each
predicted value so that the data closely approximated the usual as-
sumptions of the regression model (i.e., residuals are normally and
independently distributed with constant variance). Our focus with Ex-
ample 1 will be to explore the effects of the four methods of coding
the group variable: dummy codes, weighted effects codes, unweighted
effects codes, and contrast codes.

Interpretation of regression coefficients

Dummy-coded analysis. The first analysis of the data used the dummy
codes presented in Table 1(A), Group 3 as Base. The regression equa-
tion was structured as in Equation 2. This model was estimated using
the simulated data set and the results are presented in the first two col-
umns in Table 2. These columns give the unstandardized regression
coefficients, standard errors, t tests, and significance levels of Equa-
tion 2.

As we showed earlier, the interpretation of the regression coeffi-
cients can be derived by substituting the values of the dummy codes
corresponding to each group into Equation 2. For Group 1,

¥ = bo + b1X 4 byW + b3(1) + by(0) + bsXW + bX (1)

Simplifying and collecting terms reduces the equation to

¥ = (bo + b3) + (b1 + bg)X + (by + bg)W + (bs + b1o)XW (12a)
For Group 2, the equation reduces to

¥ = (by + bs) + (b1 + b7)X + (by + bo)W + (bs + by )XW (12b)

For Group 3 (with values of 0 on both dummy codes), the equation
reduces to

Y = by + 51X + bW + bsXW (12¢)

From Equation 12c we see that for dummy coding, the regression coeffi-
cient b, in the full regression equation (Equation 2) gives the regression
of Y on X in Group 3, the comparison group. The regression of ¥ on X
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in Group 1 is (b; + bg) for Equation 12a. The regression of Y on X in
Group 2 is given as (b; + by). The three regression equations (12a, 12b,
12¢) are simple regression equations showing the regression of the de-
pendent variable on the continuous predictors at specific values of the
other predictors (here, code variables that signify group membership).
The slopes of these regressions, i.e., by, (b1 + bs), and (b; + b7) for
the regression of Y on X for Groups 3, 1, and 2, respectively, are simple
slopes. The simple slopes are completely comparable to the ANOVA
simple effects for the effect of personality variable X on the dependent
variable within each group (“at each level of group”).

The four coefficients present in simple slope Equation 12¢ have direct
interpretations that relate to the values of the intercept, simple slopes
of Y on X and W, and the XW interaction in Group 3, the comparison
group. Note that the values of the unstandardized regression coeffi-
cients reported in Table 2 for the intercept, by = —3.30, the slope for
X, b, = —0.85, the slope for W, b, = 2.29, and the XW interaction,
bs = 1.06, precisely equal the corresponding values in the individual
equation for Group 3 (Equation 11) presented above.

Turning now to Group 1 (Equation 12a), the intercept for Group 1 is
(by + b3). b, then, is the difference between the intercepts for Group 1
and Group 3, and this value (4.08) is equal to the difference between
the Group 1 and Group 3 intercepts from the individual equations above
(Equations 9 and 11). (b1 + be) is the simple slope of ¥ on X in Group 1,
(by + bg) is the simple slope of Y on W in Group 1, and (bs + b1o)
represents the magnitude of the XW interaction in Group 1. The b3,
bg, bs, and by coeflicients are interpreted respectively as differences
between the intercept (4.08), slope for X (3.99), slope for W (—4.44),
and XW interaction (—3.22) in Group 1 and the corresponding effect
in the comparison group (Group 3). Again, the estimated values in the
regression analysis are identical to the corresponding differences be-
tween the individual equations for Group 1 (Equation 9) and Group 3
(Equation 11) presented above.

The interpretations for bs, b7, by, and by; (see Equation 12b) exactly
parallel those discussed in the preceding paragraph (i.e., intercept, X
slope, W slope, XW interaction, respectively), except that they refer to
differences between Group 2 and Group 3 rather than to comparisons
between Group 1 and Group 3.

Weighted effects coded analysis. Developing interpretations for regres-
sion coefficients generated in a weighted effects coded analysis pro-
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ceeds in the same manner as with dummy codes. Weighted effect codes
for the three-group case were presented in Table 1(C), under “General
Form,” with the specific values of these codes for the present simulation
example in which the group sizes are 60, 220, and 120 also presented
in Table 1(C), under “Illustration.” We substitute the values of C; and
C, for each group into Equation 2, the full regression model and col-
lect terms. The full algebra is presented in the Appendix for interested
readers.

The result of the algebra shows that by is the weighted average of the
three individual group intercepts. A numeric example illustrating this
result is provided by the analysis of the simulated data with weighted
effects codes (see Table 2, columns under “Weighted Effects” head-
ing). The value of by = —.22 is, in fact, equal to the weighted average
of the intercepts from the individual group equations (Equations 8, 9,
10).

bo = [.7730(60) + 1.1869(220) — 3.3034(120)]/[60 + 220 + 120]
=-22

Both the algebra and the numeric example show that b5 is the difference
between the Group 1 intercept and the weighted average of intercepts.
Similarly, b4 is the difference between the Group 2 intercept and the
weighted average of intercepts.

Performing the same series of steps on the X slope, W slope, and XW
interaction portions of the full regression equation provides analogous
interpretations for the rest of the coefficients in this analysis. b; is the
weighted average of the X slopes for the individual groups, b, is the
weighted average of the W slopes for the individual groups, and bs is
the weighted average of the XW interactions for the individual groups.
bg 1s the difference between the X slope for Group 1 and the weighted
average of individual slopes, bg is the difference between the W slope
for Group 1 and the weighted average of the W slopes, and by is the
difference between the Group 1 XW interaction and the weighted aver-
age of the XW interactions. b is the difference between the X slope
in Group 2 and the weighted average of the X slopes in the individual
groups, by is the difference between the W slope for Group 2 and the
weighted average of the W slopes, and by, is the difference between
the XW interaction for Group 2 and the weighted average of the XW
interactions across the three groups.

For completeness, we can also calculate the corresponding values for
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Group 3, again based on the algebra in the Appendix. The difference be-
tween the Group 3 intercept and the weighted average of the intercepts
for the three groups is (b3Cy + bsCy) = [bs(—ni/n3) + bs(—ny/n3).
The value [bg(—ny/n3) + b:(—ny/n3)] is the difference between the
X slope in Group 3 and the weighted average of the X slopes in the
individual groups. The difference between the W slope and XW inter-
action in Group 3 and the corresponding weighted averages across the
three groups are [bg(—n1/n3) + bo(—n,/n3)] for W and [byo(—ny /n3) +
by (—n /n3)], respectively.

Unweighted effects codes. Comparison of unweighted with weighted
effects codes (see Table 1) indicates that the only difference is that
unweighted effects codes have a value of [—1, —1] for Group 3 rather
than [—n;/n3, —ny/n3|, which provides the weighting by group size.
To develop the interpretation for unweighted effects codes, we use the
same logic that was presented above for weighted effects codes with
one exception: [—1, —1] is substituted in for the values of C; and C,
in Group 3. The result is that each n; (the sample size in Group i) in
the equations presented for weighted effects codes is replaced by 1,
greatly simplifying the algebra (see Appendix). The result is that, for
unweighted effects codes, by is the unweighted mean of the intercepts
of the regressions in the individual groups,

bo=Nh+hL+15)/3

For example, by is —0.45 in the regression analysis for the full model
(Equation 2) presented in Table 2 in the columns under the “Un-
weighted Effects” heading. This value equals the unweighted mean of
the intercepts of the three individual group regression equations (Equa-
tions 9, 10, 11),

bo = [0.7730 + 1.1869 + (—3.3034)]/3 = —0.45

Correspondingly, b; is the unweighted mean of the X slopes in the
individual groups, b, is the unweighted mean of the W slopes in the indi-
vidual groups, and bs is the unweighted mean of the X W interactions in
the individual groups. The other regression coefficients in the equation
have the same interpretation as they did in unweighted effects coding,
except that they represent the difference between the statistic for the
specified group (e.g., X slope for Group 1) and the unweighted mean of
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the corresponding statistics for the three groups (e.g., unweighted mean
of X slopes for individual groups).

Contrast codes. The sets of contrast codes that are most commonly used,
such as those presented in Table 1(D), are not weighted by group size.
Consequently, the interpretation of by, by, by, and bs exactly parallel
their respective interpretations in unweighted effect codes. The contrast
code analysis is illustrated using the simulated data set in the far-right
section of Table 2 under the “Contrast Codes” headings. by = —0.45
is the unweighted mean of the intercepts, b; = 0.58 is the unweighted
mean of the X slopes, b, = —0.05 is the unweighted mean of the W
slopes, and bs = —0.04 is the unweighted mean of the XW interactions
in the three individual groups, just as in the unweighted effects code
analysis. bj represents the difference between the intercept in Group 3
and the unweighted mean of the intercepts in Groups 1 and 2. This can
be seen by using the values from Equations 9, 10, 11:

by = —3.3034 — [(0.7730 + 1.1869) /2] = —4.28

Similarly, bs represents the difference between the X slope of Group 3
and the unweighted mean of the X slopes of Groups 1 and 2. bg repre-
sents the difference between the W slope of Group 3 and the unweighted
mean of the W slopes of Groups 1 and 2. by, represents the difference
between the XW interaction term in Group 3 and the unweighted mean
of the XW interaction terms in Groups 1 and 2. Finally, b, represents
the difference between the intercepts, b, the difference between the X
slopes, by the difference between the W slopes, and by, the difference
between the XW interaction terms in Groups 2 and 1.

An interpretational caveat. We remind the reader of the important caveat
presented earlier regarding the interpretation of regression coefficients
in models containing intefactions. This caveat applies for each of the
four coding systems. All terms except the highest order interaction(s)
(here, XWC; and XWC,) are conditional effects that are interpreted
at the value of O for the variables not involved in the term (Aiken &
West, 1991; Cohen, 1978). For example, b; represents the slope for X
when C, =0, C, = 0, and W = 0. For dummy coding and centered
W, this effect is interpreted in Group 3 (comparison group) at the mean
value (0) for W. For unweighted effects coding (or contrast coding) and
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centered W, this effect is interpreted at the unweighted mean of the
three groups and centered W.

Significance tests

Two different outcomes for significance testing are apparent for the four
coding systems that are included in Table 2. First, identical results are
produced for the omnibus 2 degree of freedom tests of Group, Group x
X, Group x W, and Group x X x W for each of the coding systems. The
same total variance for each of the effects involving group is accounted
for by each of the coding systems. Second, the interpretations of the
corresponding regression coefficients differ across coding systems. For
example, b, = 2.29 is the W slope in Group 3 for dummy coding,
b, = 0.21 is the weighted mean of the individual W slopes for the three
groups for weighted effects coding, and b, = —0.05 is the unweighted
mean of the individual W slopes for the three groups in unweighted
effects coding and contrast coding. Given that the same regression co-
efficient (e.g., b,) answers a different question in each coding system,
it is not surprising that ¢ tests of these regression coefficients produce
different results. For example, the test of b, is for dummy coding,
£(388) = 2.91, p < .004; for weighted effect coding, #(388) = 0.21, ns;
and for unweighted effect and contrast coding, #(388) = —0.10, ns. The
lesson is clear: Each coding system represents a different partitioning
of the total variance associated with the overall 2 df group effect.®

Issues in the choice of a coding system

In regression equations that parallel familiar complete factorial ANOVA
models, each of the coding systems provides directly interpretable re-
sults. The choice of coding system depends on the specific questions of
the researcher.

1. If the researcher’s primary interest is in comparing the parame-
ters (means, slopes, interactions) of each treatment group with those
of a specific comparison group, dummy coding gives these results di-
rectly. For example, a researcher investigating the interaction of IQ and

6. Researchers wishing to prepare an ANOVA table can easily do so. Some com-
puter programs (e.g., SAS PROC GLM) provide the F tests for each first-order effect,
two-way interaction, and three-way interaction directly. Regression programs typically
provide ¢ tests of each of the 1 df terms. These ¢ tests can easily be converted since
F = 12 for 1 df tests.
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psychiatric diagnosis (schizophrenic, depressive, normal) in predict-
ing cognitive processing of information could benefit by using dummy
codes. If the normal group is chosen as the base group, then the re-
gression coefficients associated with dummy codes and their interaction
compare each of the psychiatric groups with the normal group.

2. If the researcher is interested in producing estimates that most
closely parallel those of ANOVA, the researcher must choose between
unweighted effect codes, weighted effect codes, and contrast codes. Re-
call that main effects and lower order interactions in ANOVA are more
properly considered to be average effects. In regression analysis, paral-
lel results are obtained only when the values of the codes Cy, C,, etc. for
a group variable are all equal to 0 at the unweighted or weighted mean
of the sample. Then in Equation 2, b, represents the grand (or average
mean), b; represents the average X slope, b, represents the average W
slope, and bs represents the average interaction. To illustrate, consider
the Rotter and Mulry (1965) study investigating the effects of locus of
control and task description on subject’s decision time described at the
beginning of this article. If Rotter and Mulry predicted both a first-
order (average) effect of locus of control and a Locus of Control x
Task Description interaction, effect coding (or contrast coding) would
provide directly interpretable tests of both predictions.

The choice between unweighted effects, weighted effects, and con-
trast codes depends on the nature of the group variable and the questions
of interest to the researcher.

When the groups represent experimental treatments, differences in
sample sizes among groups do not represent meaningful differences
in the proportion of each group in the population. Rather, differences in
group size will typically reflect factors such as peculiarities of the ran-
domization process or experimenter decisions to include more or fewer
subjects because of considerations of the importance, cost, or difficulty
in mounting each treatment condition. Under these circumstances, un-
weighted effects codes that weight each group equally in the estimation
of all effects in the equation will be preferred to weighted effects codes.
The interpretation of the results from the unweighted effects analysis
will then most closely parallel the interpretation in ANOVA when ap-
plied to experiments. For example, statements about the average slope
of a continuous variable X in the sample will represent the unweighted
average of the slopes in each of the individual treatment groups, again
given the caveat that W = 0 (mean of W in centered solution).

When the groups represent experimental treatments and the re-
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searcher has several a priori hypotheses involving contrasts among the
groups, contrast codes are preferred. The interpretation of regression
coefficients associated with the continuous variables and their inter-
action is identical to that of unweighted effect codes. The interpretation
of the contrast codes and their interactions provide tests of the a priori
hypotheses.

When the group variable represents a natural category (e.g., religion)
and simple random sampling is used to draw cases from a population,
the number of subjects in each specific group (e.g., Catholic), relative
to the total number of subjects in the sample, provides an unbiased
estimate of the proportion of the population comprised by that group.
Under these circumstances, the researcher likely has an interest in esti-
mating relationships that exist in the actual population. Weighted effects
codes provide these estimates. In contrast, unweighted effects codes
and contrast codes’ permit less satisfactory generalization of findings
if the group variable represents a set of natural categories. The findings
can be generalized to a hypothetical population in which each of the
groups exists in equal proportions.

When the group sizes are equal, the results of regression using
weighted and unweighted effects coding will be identical. When the
group sizes are approximately equal, the choice will in practice make
little difference in the results (see Example 2 below).

When there are only two groups, unweighted effects codes and con-
trast codes yield identical significance tests.

3. Researchers wishing to test the overall effects of the group factor
and its interactions, as is customary in ANOVA, should conduct the
set of tests described in the earlier section, “Testing Overall Effects:
Multiple df Tests.” In each case, the multiple df test of the gain in
prediction (Equation 8) is used to compare the full regression model to
a reduced model in which the terms associated with the effect of inter-
est have been eliminated (e.g., b3C and b4C; for the overall effect of
group in Equation 2). Each first-order effect and interaction involving
the group factor must be tested in this manner.

4. Researchers may wish to explore regression models that do not par-
allel standard complete factorial ANOVA models. Such models intro-
duce additional complexity into the interpretation of the results. For

7. Weighted contrast codes (see Serlin & Levin, 1985) provide appropriate tests when
the researcher has several a priori hypotheses about contrasts between groups repre-
senting natural categories.



Experimental Personality Designs 29

example, consider the following regression equation, which is a general-
ization of a two-factor analysis of covariance model with one covariate
W to be controlled:

Y = by + b1 X + bsCy + b3Cy + baXC + bsXCy + bW (13)

The terms associated with by through bs represent a model for an ex-
perimental personality design in which the treatment group factor has
three levels and X (e.g., need for cognition) is a continuous individual
difference variable. W represents another continuous individual differ-
ence variable (e.g., IQ) that is to be statistically controlled in the model.
In this model, the interpretation of the coefficients for the intercept, X,
C,, C3, XC,, and XC, terms are exactly as described above for each
of the coding systems.® However, the effect of W now represents the
pooled within-group regression coefficient for W. The calculation of the
pooled within-group regression coefficient weights the W slope for each
individual group by the sum of squares predicted for that group and
then computes the weighted mean (see Marascuilo & Levin, 1983, pp.
41, 47-51; Pedhazur, 1982, pp. 438-445). The pooled within-group re-
gression for W will not in general be equal to either the weighted or
unweighted average of the individual slopes.

Thus, the interpretation of the bg coefficient is distinct from the co-
efficients for the experimental personality design reflected in by through
bs. Since X interacts with C; and C;, all our prescriptions for inter-
preting equations containing interactions hold. With dummy codes, by
through bs are interpreted with respect to the control group. With un-
weighted effects codes, by through bs are interpreted with respect to
the unweighted mean of the individual group estimates. With weighted
effects codes, by through bs are interpreted with respect to the group
sample size weighted mean of the individual estimates. With contrast
codes, by is interpreted with respect to the unweighted mean of the
intercepts, and b, through bs are interpreted with respect to the specified
group contrasts. The covariate W does not interact with C in Equation
13. Hence, the bg coefficient is independent of the choice of coding sys-
tem (i.e., will be constant across coding systems). The interpretation of

8. Because terms have been dropped from the equation, not every ; in Equation 2 will
correspond to the same term as b; in Equation 12. For example, the b, term refers to
W in Equation 2 and the first code variable (C) in Equation 12. The regression coeffi-
cients that do correspond are those that refer to the same term (e.g., W) in the different
equations.
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the bg coefficient as the pooled within-class regression coefficient is en-
tirely consistent with the familiar regression coefficient for the covariate
reported in standard analysis of covariance (ANCOVA) programs.

In general, the interpretation of regression equations like Equation
13 involves distinguishing between the continuous variables (and inter-
actions of continuous variables) that do and do not interact with the set
of code variables representing the categorical variable. If a continuous
predictor is involved in an interaction with a categorical variable (e.g.,
X interacts with C; and C; in Equation 13), then our earlier prescrip-
tions for interpretation as a function of the group coding system hold.
If a continuous independent variable does not interact with any other
continuous or categorical independent variables in the equation, then
the interpretation is unconditional, i.e., not dependent on the value of
other predictors. The coefficients of continuous independent variables
that do not interact with any other variables in the equation are inter-
preted as pooled within-group regression coeflicients, just as in familiar
ANCOVA. Interactions of continuous independent variables that do not
interact with the categorical variable are interpreted as pooled within-
group interactions. Aiken and West (1991) present a full discussion of
issues in interpreting interactions between continuous variables. Re-
gression equations that parallel the form of a complete factorial design
in ANOVA do not introduce these complexities of interpretation.

Example 2: Self-Esteem, Feedback, and Liking

Given our extensive presentation of the interpretation of coding sys-
tems above, we now consider the analysis of an actual data set. We will
also introduce methods of graphically presenting the results and post
hoc probing of significant interactions.

Overview of study

The example presents a reanalysis of data from an experimental person-
ality design kindly made available to us by Michael Kernis and origi-
nally reported in Kernis et al. (1993). This data set concerns the rela-
tionships between level of self-esteem, the stability of self-esteem, type
of feedback, and various cognitive and emotional response variables.
Level of self-esteem, or positivity of one’s self-view, was measured via
Rosenberg’s Self-Esteem Scale (Rosenberg, 1965). To represent sta-
bility of self-esteem, Kernis et al. calculated the standard deviation
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of each individual subject’s scores based on eight administrations of a
modified version of Rosenberg’s Self-Esteem Scale completed at 12-
hour intervals over the course of 4 days. We will refer to this variable
below as variability of self-esteem to avoid confusion in the interpre-
tation of the direction of the results (i.e., high values represent high
variability).

Subjects who had previously been assessed in terms of level and vari-
ability of self-esteem were then randomly assigned to either a positive
or negative feedback condition. In both feedback conditions, subjects
recited a passage from Kurt Vonnegut’s novel Cat’s Cradle in front of
a one-way mirror and then received an evaluation of their social skills
from a fictitious evaluator supposedly positioned behind the mirror.
In the positive feedback condition, the evaluation stated that the ob-
server felt that the subject seemed very socially skillful. In the negative
feedback condition, the evaluation stated that the observer felt that the
subject did not seem very socially skillful. Subjects then completed
a measure of their own emotional reactions and made a number of
ratings of the evaluator. Here, we report the reanalysis of one of these
ratings, liking for the evaluator, for the 97 subjects who had complete
data (n,m = 50 for the positive feedback condition; n,,, = 47 for the
negative feedback condition).

Structuring the regression model and specifying a coding system

The independent variables in each analysis were level of self-esteem
(continuous), variability of self-esteem (continuous), and feedback con-
dition (a two-level categorical variable). Each continuous predictor
variable was centered prior to analysis. For the purposes of illustra-
tion, separate analyses were conducted using each of three codings of
the categorical variable: (a) dummy coding, (b) unweighted effects
coding, and (c) weighted effects coding. Equation 1, which contains
all first-order effects, two-way interactions, and three-way interactions
among the level (X), variability (W), and feedback (C) variables, was
estimated. Equation 1 is reproduced below:

Y = by + b1X + byW + b3C + byXW + bsXC
+bgWC + b:XWC 1)

Given that the group variable was an experimental manipulation and
the regression model paralleled a complete factorial ANOVA design,
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unweighted effects codes (equivalent to contrast codes multiplied by
a constant in the two-group case) are preferred since this system pro-
vides a coherent set of estimates in which the two treatment groups
are weighted equally. Dummy codes provide useful information about
differences between the two groups when the two measured variables
have a value of O (i.e., at the means of the measured variables); this
interpretation will be particularly useful in post hoc tests. Weighted
effects codes are less useful in this experimental context, but are pre-
sented here for completeness. In addition, given that the group sizes are
approximately equal, the results of weighted effect coding are expected
to be approximately equal to those of unweighted effects coding. Re-
sults of regression analyses with these three coding systems are given
in Table 3.

Interpreting the unstandardized regression coefficients

The interpretation of the unstandardized regression coefficients follows
the same framework as in Example 1. However, note that the two-group
case permits one major simplification in interpretation relative to the
three or more group case. Recall that the multiple df, omnibus tests
of the first-order effect, and interactions involving the group factor are
identical across coding systems. In the two-group case, the 1 df test
of each of the effects involving the group factor is equivalent to the
omnibus test of the gain in prediction. Thus, in the two-group case, the
t tests and associated significance levels for each of the effects involv-
ing group will be identical across coding systems. This can be seen
in Table 3 in the 7 tests and p values for each of the effects involving
group: Feedback (C), #(89) = 11.88, p = .0001, Feedback x Level
of Self-Esteem, 1(89) = 2.79, p = .006, Feedback x Variability of
Self-Esteem, #(89) = 0.67, ns, and Feedback x Level x Variability
of Self-Esteem, ¢(89) = 3.09, p = .003. In contrast, the ¢ tests and p
values for the corresponding terms involving C; and C; in Example 1
(see Table 2) differ across coding systems. Thus, comparison of the
analogous effects in the three-group (Example 1) and two-group (Ex-
ample 2) data sets verifies that this simplification only occurs in the
two-group case.

At the same time, note in Table 3 that the value of the corresponding
unstandardized regression coefficients for the effects involving group
differ across the three coding systems. For example, consider the value
of the feedback first-order effect, bs: b3 = 6.910 for dummy coding,
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Table 3

33

Results of Regression Analyses tor Three Coding Systems:
Reanalysis of Kernis et al. (1993) Data

Dummy codes Weighted effects  Unweighted effects
b t b t b t
(SEp) p (SEp) p (SEp) p
by intercept 7.839 1845 11.401 39.27 11.294  38.84
(0.425) .0001 (0.290) 20001 (0.291) .0001
by SE level (X) -0.130 -2.51 —-0.022 -0.60 -0.026 —0.50
(0.052) 01 (0.037) .55 (0.037) .50
b, SE variable (W) —0.005 —0.05 0.049 0.62 0.047 0.61
(0.101) .96 (0.078) 53 (0.078) .55
b; feedback (C) 6910 11.88 3.348  11.88 3.455 11.88
(0.582) .0001 (0.282) .0001 (0.291) .0001
byX x W —-0.035 -243 -0.006 -0.63 —-0.007 -0.72
(0.014) .02 (0.009) 53 (0.009) 47
bsX x C 0.209 2.79 0.101 2.79 0.104 2.79
(0.075) .006  (0.036) 006  (0.037) .006
bsW x C 0.104 0.67 0.050 0.67 0.052 0.67
(0.155) .50 (0.075) .50 (0.078) .50
X xWxC 0.056 3.09 0.027 3.09 0.028 3.09
(0.018) .003  (0.009) 003 (0.009) .003

Note. The regression coefficients correspond to those in Equation 12:

¥ =bg + 61X + baW + b3C + bsXW + bsXC + bgWC + b;XWC

The four entries for each coefficient for each coding system are: Row 1, estimate of unstan-
dardized regression coefficient and ¢ value; Row 2, standard error of unstandardized regression
coefficient (in parentheses) and p value.

b3 = 3.348 for weighted effects coding, and b3 = 3.455 for un-
weighted effects coding. This value represents the difference (6.910)
between predicted means in the negative and positive feedback groups
for dummy coding, the difference (3.348) between the predicted mean
of the negative feedback group and the predicted unweighted mean of
the two treatment groups for unweighted effects coding, and the dif-
ference (3.455) between the predicted mean of the negative feedback
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group and the predicted weighted mean of the two treatment groups for
weighted effects coding. In all three coding systems, the group effects
are interpreted at the point where the values of level (X ) and variability
(W) of self-esteem are both 0. When the variables X and W are cen-
tered, this point is the mean value of the two continuous independent
variables.

In contrast, both the regression coefficients and the ¢ tests for all
effects involving only the continuous variables differ across the coding
systems. To illustrate, consider b, the regression coefficient for the first-
order effect of level of self-esteem. In Table 3, in the dummy-coded
analysis, by = —0.130, 1(89) = —2.51, p = .014, represents the slope
of level of self-esteem in the comparison group (the negative feed-
back condition). In the weighted effects coding analysis, b, = —0.022,
t(89) = —0.60, ns, represents the weighted mean of the individual
slopes for level of self-esteem in the two feedback conditions. Finally, in
the unweighted effects coding analysis, by = —0.026, ¢(89) = —0.50,
ns, represents the unweighted mean of the individual slopes for level of
self-esteem in the two feedback conditions. Regardless of the coding
system for feedback, the regression coefficient for level of self-esteem
is interpreted at O in the coding system for the categorical variable.

Table 3 shows that for the unweighted effects codes, which most
closely parallel the typical ANOVA results, we have a significant first-
order effect for feedback, modified by a Feedback x Level of Self-
Esteem two-way interaction, and a Feedback x Level x Variability
of Self-Esteem three-way interaction. Again, very similar results are
found for weighted effects coding, as expected given the approximately
equal sample sizes of the two groups (n; = 50; n, = 47). To fur-
ther understand these significant interactions, it is useful to present the
results graphically and to conduct tests of simple effects.

Graphical display of results

There are several methods of graphically displaying the results of
complex interactions between categorical and continuous variables
(see Cleveland, 1993, 1994). We present two particularly useful ones
below: traditional two-dimensional graphs (co-plots) and newer three-
dimensional graphs (perspective plots).

Two-dimensional graphs. To plot the three-way interaction between a
categorical and two continuous variables, separate graphs representing
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the interactions between the two continuous variables are constructed
for each treatment group. One of the continuous variables, here level
of self-esteem, is placed on the X-axis and the predicted value of Y (),
here predicted liking for the evaluator, is placed on the Y-axis. For the
other continuous variable W, here variability of self-esteem, the re-
searcher must choose specific values at which a regression line will be
plotted. When meaningful values of W exist a priori (e.g., on a measure
of depression, a score typical of a normal population, a clinical cutoff
score, and a score typical of a clinical population based on normative
data), these values should be chosen. In the absence of a priori mean-
ingful values, Cohen and Cohen (1983) suggested the convention of
plotting values at one standard deviation below the mean of W(Wy,, ),
the mean of W(Wyoq), and one standard deviation above the mean
of W(Whign). We will follow Cohen and Cohen’s convention in our
example.

The next step is to construct the regression equation for each group.
Our goal is to construct simple regression equations for the regression
of Y on X within one of the groups, each at a specific value of W. Just as
the highest order interaction is invariant across the scaling of the con-
tinuous predictors, the slopes of the simple regression equations within
each group are constant across coding systems.

Constructing simple regression equations is most easily accomplished
using the dummy-coded solution. While the identical final results are
obtained from the other coding systems, the algebra is more difficult.
If we collect terms from the dummy-coded solution involving each
continuous variable, we find

¥ = (bo + b3C) + (11X + bsXC) + (bW + bgWC)
+ (baXW + b;XWC) (14)

For the negative feedback (comparison) group, we first substitute in
the value C = 0 and then substitute in the values of all the regression
coefficients from the dummy-coded regression analysis in Table 3. This
yields the specific regression equation for the negative feedback group
in the present data set.

¥ = (7.839 + 0) + (—0.130X + 0) + (—0.005W -+ 0)
+ (—0.035WX +0)
¥ = 7.839 4+ (~0.130)X + (—0.005)W + (—0.035)XW  (15)
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This equation describes the simple first-order and simple interactive
effects of X and W in the negative feedback group.

In a similar manner, we first substitute in the value of C = 1 and then
once again substitute in the specific value for each regression coefficient
from the dummy-coded regression analysis in Table 3 into Equation 14.
This yields the specific regression equation for the positive feedback
group in the present data set.

¥ = (7.839 + 6.910) + (—0.130 + 0.209)X + (—0.005 + 0.104)W
+ (—0.035 + 0.056)XW
¥ = 14.749 + 0.079X + 0.099W + 0.021XW (16)

This equation describes the simple first-order and simple interactive
effects of X and W in the positive feedback group.

For centered W, the mean = O and the standard deviation of W is
4.039. Following Cohen and Cohen’s convention, we plot the simple
regression lines at Wy,, = —4.039, Wmog = 0, and Wign = +4.039.
Substituting these values into the simple regression equation (Equa-
tion 15) at three different values of W for the negative feedback group,
we find:

For Wiow, ¥ = 7.839 + (—0.130)X + (—0.005)(—4.039)
+(—0.035)(—4.039)X,

¥ = 7.859 + 0.011X for Wiow;
)j = 7.839 — 0.130X for Whod;
Y =7.819 — 0.271X for WHigh-

These simple regression lines for the negative feedback group are
plotted in Panel A of Figure 1. The lines display the XW interaction
in the negative feedback group (i.e., a simple interaction in ANOVA
terminology).

We now follow the same procedures, substituting C = 1 and the
values of the regression coefficients from Table 3 into the simple re-
gression equation (Equation 16) for the positive feedback group. This
results in the following simple regression equations at three different
values of W for the positive feedback group:

For Wigw, P = 14.749+0.079X+0.099(—4.039)+0.021(—4.039)X;

¥ = 14.349 — 0.008X for Wiow;
¥ = 14.749 + 0.079X for Wnoa;
Y = 15.149 + 0.165X for WHigh-
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Figure 1

Simple Regression Lines Depicting the Relationship between Level
of Self-Esteem and Liking for the Evaluator at Specified Values of
Variability of Self-Esteem within Each Feedback Group

Note. Values on the Y-axis represent predicted liking for the evaluator. The solid,
dashed, and dotted lines represent high, moderate, and low values of variability of
self-esteem, respectively.

These simple regression lines for the positive feedback group are plotted
in Panel B of Figure 1. They display the XW interaction in the positive
feedback group (i.e., a simple interaction in ANOVA terminology).

Figure 1 shows that in the negative feedback group, the regression
of liking on self-esteem becomes progressively more negative as vari-
ability of self-esteem increases. In contrast, in the positive feedback
group, the regression of liking on self-esteem becomes progressively
more positive as variability of self-esteem increases.

Figure 1 presents only one of the possible two-dimensional displays
of the data at levels or values of the third variable. Each of the regres-
sion equations involving interactions discussed in this article generates
a separate regression surface defined by the two continuous predictors
X and W for each treatment group. Several different two-dimensional
displays of the three-dimensional surface can be constructed. For ex-
ample, we could construct three panels corresponding to (a) Wiow,
(b) Wwmod, and (c) Wyign that emphasize the direct comparison of the
simple regression lines of Y on X for negative and positive feedback
at three different values of variability of self-esteem. In this depiction,
the left panel would represent Wy, and would display the two simple
regression lines:
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(A) Negative Feedback Group (B) Positive Feedback Group
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Figure 2
Simple Regression Lines Depicting the Relationship between
Stability of Self-Esteem and Liking for the Evaluator at Specified
Values of Level of Self-Esteem within Each Feedback Group

Note. Values on the Y-axis represent predicted liking for the evaluator. The solid,
dashed, and dotted lines represent high, moderate, and low values of level of self-
esteem, respectively.

}:’ = 7.859 + 0.011X for negative feedback;
Y = 14.349 — 0.006X for positive feedback.

Alternatively, we could explore the regression of Y on W at three dif-
ferent values of X within each treatment. For level of self-esteem, the
mean = 0 (centered) and the standard deviation is 7.905. Paralleling
the above procedure, these values can be substituted back into Equa-
tion 14 and the simple regression lines for ¥ on W at X, = —7.905,
Xmoda = 0, and Xpjgn = +7.905 are calculated. These simple regres-
sion lines are depicted in Figure 2, Panel A for negative feedback and
Panel B for positive feedback.

Each of the different two-dimensional displays can potentially help
reveal different aspects of the results. Following the recommendations
of Cleveland (1994), the panels should be plotted side by side sharing
the same values on the Y axis to facilitate comparisons across groups.
This was done in Figures 1 and 2, clearly showing the large first-order
effect for feedback group in addition to the different XW interaction
within each treatment group. The two-dimensional displays can also be
useful for table lookup for the specific values that are plotted. That is,
in Figure 1 the predicted value of Y can be read directly from the graph
(“looked up”) for any value of X for the values of W that are specified.
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Figure 3
Three-Dimensional Perspective Plot Depicting Regression Surface
within Each Feedback Group

Note. SE Level corresponds to level of self-esteem. SE Variability corresponds to vari-
ability of self-esteem. Values on the Y-axis represent predicted liking for the evaluator.
(A) == Negative Feedback Group; (B) = Positive Feedback Group.

Three-dimensional graphs. Another alternative is to directly represent
the three-dimensional regression surface separately for each treatment
group. Modern graphics programs permit the plotting of regression
surfaces using three-dimensional perspective (or wireframe) plots. In
Figure 3, the regression surface corresponding to the negative feedback
condition is plotted in Panel A and the surface corresponding to the
positive feedback condition is plotted in Panel B. These plots can be
made with the modern statistical graphics procedures in Mathematica
(Wolfram, 1991), S-PLUS (StatSci, 1995), and the S-PLUS Trellis Dis-
plays library (MathSoft, 1995), as well as with presentation graphics
packages such as Axum (TriMetrix, 1993) and Stanford Graphics (Stan-
ford Graphics, 1994), among others (see Marsh, 1994; Nash, 1994, for
reviews of several graphics programs). Following the recommendations
of Cleveland (1994), with most data sets the panels should be plotted
side by side sharing the same values on the Y axis to facilitate compari-
sons across groups. Unfortunately, not all current graphics packages
permit this option. The plots in Figure 3 were done in S-PLUS using
the two within-group regression equations (Equations 15 and 16). Other
perspectives (viewpoints) on the two regression surfaces can also be
plotted.

The three-dimensional perspective plots are particularly useful in
visualizing the shape of the regression surface (Cleveland, 1993). Both
panels of Figure 3 show that the predicted liking for the evaluator is
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little affected by feedback for subjects with low values of self-esteem
variability, regardless of their level of self-esteem. However, as the
variability of self-esteem increases, the relation between the level of
self-esteem and liking for the evaluator becomes increasingly negative
in the negative feedback condition (Panel A) and increasingly positive
in the positive feedback condition (Panel B).

Comment. Both methods of graphical display are useful. The three-
dimensional perspective plot is useful in visualizing the shape of the
regression surface and permits an overall comparison of the regression
surfaces in the two treatment groups. The three-dimensional surface is
not useful in table lookup because the viewer cannot accurately track
points from the surface to the Y-axis. The two-dimensional graphs
present simple regression lines that represent specific values on the
regression surfaces. These simple regression lines highlight the differ-
ences between specified values on the surfaces and are useful for table
lookup. The slopes of these lines are also a focus of post hoc testing
procedures.

Post hoc testing procedures

Following a significant three-way interaction, three types of effects may
be tested to understand further the nature of the interaction. These are
(a) tests of simple slopes of ¥ on X within groups, (b) tests of simple
slopes of ¥ on W within groups, and (c) tests of group differences at
specified pairs of values of the two continuous variables. These tests
parallel the practice in ANOVA of post hoc testing of “simple, simple
main effects” (i.e., testing group differences on the one factor in an
experiment at specified levels on the other factors; see Winer et al.,
1991). Each of these three methods of testing is discussed below.

Tests of simple slopes of Y on X within groups. We derived above
the simple regression equations for the regression of ¥ on X within
each of the treatment groups at specified values of W. The regres-
sion lines corresponding to these simple regression equations are illus-
trated in Figure 1. The slopes of each of these equations may be tested
against 0 using a general matrix-based procedure developed by Aiken
and West (1991, pp. 24-26). More simply, we can use a relatively
simple, computer-based method that takes advantage of our understand-
ing of the meaning of regression coefficients when other variables in
the equation have a value of 0.
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Consider the interpretation of the b; coefficient in dummy coding.
This coefficient represents the slope of the simple regression of ¥ on X
when C = 0 (comparison group, here negative feedback) and W = 0
(mean of W). Thus, the b; coefficient estimates the simple slope of
Y on X for the negative feedback group for Wyq (the mean level of
W) and the associated ¢ test assesses whether this value (b; = —.129)
is significantly different from 0. Suppose now we reran the same re-
gression model using the reversed dummy coding system: C = 0 for
positive feedback and C = 1 for negative feedback. Now, the b; co-
affuiem esvimats afe simpie siope or” 7o X for tie positve reeaback
group for W4 and the associated ¢ test assesses whether this value is
significantly different from 0.

How can we test the simple slopes of Y on X at Wi, and Whign?
Recall that we originally rescaled X and W through centering to sim-
plify the interpretation of the unstandardized regression coefficients.
We can now rescale W again so that its value is 0 at Wiy, or Whigh.
To be clear in this section, we will use W¢ rather than W to represent
the centered scaling of W that we have discussed up to this point. To
make Wi, = 0, we create a new variable W, in which the standard
deviation of W (4.039) is added to each subject’s score on W, that
is, W, = W¢ + 4.039. This results in scores for W, that are 0 when
Wc = —4.039. To make Wyig, = 0, we create a new variable Wy in
which the standard deviation of W is subtracted from each subject’s
score on W, that is Wy = W, — 4.039. This results in scores for
Wy that are 0 when We = 44.039. Aiken and West (1991, pp. 18-19)
present a further explanation of this procedure.

We now conduct a series of four regression analyses, each using the
same regression model (Equation 1) and the centered scores for X. The
dummy coding for C is systematically varied (original: negative feed-
back = 0, positive feedback = 1; reversed: negative feedback = 1,
positive feedback = 0) and the scores for W; and Wy replace centered
W. Taken together with the tests using W (centered) described above,
all six simple slopes have been estimated and tested. These results are
presented in the top section (A) of Table 4.

Tests of simple slopes of Y on W within groups. Tests of the simple slope
of Y on W at specified values of X illustrated in Figure 2 follow the same
general logic. A series of regression equations using the same model
and centered W are tested. The dummy coding for C (original; reversed)
and values for X;, Xc, and Xy are systematically varied. This procedure
results in six regression equations: In each case, b,, the coefficient for
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centered W, is the simple slope for Y on W at the specified values of X
and treatment group (feedback condition). The ¢ tests associated with
each b, coefficient assess the simple slope of ¥ on W against O at the
specified values of X and C. These results are presented in the middle
section (B) of Table 4.

Tests of group differences at specified values of continuous variables.
Recall that when C is dummy coded,” b3 in Equation 1 represents the
difference between Group 1 and the comparison group at the value
X = 0 and W = 0. Thus, the test of b3 in Table 3 represents the dif-
ference in the predicted means of the positive feedback and negative
feedback groups at Xymoq and Wyeq when X and W are centered. Using
our previous strategy, we can create rescaled X (X;, Xc, and Xy ) and
W (W, Wc, and Wy) variables that allow us to test the differences
between the two treatment groups. Nine separate regression equations
representing each of the nine combinations of low, moderate (mean),
and high values of X and W are estimated. In each equation, b; is the
estimate of the difference between the negative and positive feedback
conditions at the specified values of X and W. The bottom section (C)
of Table 4 presents these estimates and the associated ¢ tests of the
null hypothesis that the difference between the two groups at the point
specified is 0.

Comment. The three sets of post hoc tests described above closely
parallel the three sets of simple effects tests that would follow up a
significant 2 X 2 x 2 interaction in ANOVA. In that context, the pro-
cedure is known as Fisher’s (1935) Least Significant Difference (LSD)
method, a method that has its advocates and critics. A conservative re-
searcher wishing fuller protection against an inflated Type I error rate
because of the large number of post hoc tests may wish to use the Bon-
ferroni procedure to adjust the alpha level required to reject the null

9. In the two-group case, each of the coding systems produces an equivalent test of
the difference between the groups. However, when the treatment is comprised of three
or more groups, dummy coding must be used to provide the proper test. For example,
in the three-group case, the # test of C tests the difference between Group 1 and the
comparison group; the ¢ test of C; tests the difference between Group 2 and the com-
parison group. The difference between Groups 1 and 2 is most easily tested by recoding
Group 1 as the comparison group (see Table 1[A], Dummy Codes, Group 1 as Base).
The ¢ test of C under this coding system provides the test of the difference between
Groups 1 and 2. Each of these ¢ tests assesses the null hypothesis of no difference
between two groups at the specified values of X and W.



Table 4
Post Hoc Tests

(A) Tests of simple slopes of Y on X at values of W

Variability of self-esteem

Wiow Winod Whigh
Feedback
Negative b, 0.009 -0.129 —0.269
t value 0.1 —2.51 -3.85
p value ns 014 .0002
Positive b —0.008 0.079 0.165
t value -0.12 1.46 222
p value ns ns .029
{B) Tests of simple slopes of Y on W at values of X
Level of self-esteem
Xiow Xinod Xhigh
Feedback
Negative by 0.268 —0.005 -0.277
t value 1.52 —0.05 —2.29
p value ns ns .025
Positive by -0.070 0.099 0.268
t value -0.57 0.84 1.61
p value ns ns ns

(C) Tests of differences between means at specified values of X and W

Level of self-esteem

Xiow Xmod Xhigh

Variability of self-esteem
Whigh by 3.897 7.330 10.762

t value 3.87 8.70 8.23

p value .0002 .0001 .0001
Winod by 5.261 6.910 8.559

t value 6.29 11.88 10.42

p value .0001 .0001 .0001
Wiow b3 6.625 6.490 6.355

t value 4.81 7.48 6.26

p value .0001 .0001 .0001

Note. X refers to level of self-esteem and W refers to variability of self-esteem. High,
moderate, and low refer to values 1 SD above the mean, at the mean, and 1 SD below

the mean, respectively, on each continuous variable.
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hypothesis. For example, there are six tests of simple slopes of Y on
X (at values Wiow, Wniod, Whign in each group). The conservative re-
searcher might adopt alpha = .05/6 = .0083 for each test, providing
control of the error rate for the overall hypothesis that the simple slope
of Y on X is 0. The reader should note, however, that control of the
hypothesis-wise or even more conservative study-wise Type I error rate
is not without its attendant costs in terms of increased Type II error
rates (see Cohen, 1994).

Interpretation of Kernis et al. (1993) results

The initial analysis of the liking for the evaluator measure (see Table 3,
Unweighted Effects) showed a significant first-order effect of feedback,
a two-way interaction of feedback and level of self-esteem, and a three-
way interaction of feedback and level and variability of self-esteem.

Follow-up tests of the simple slopes of Y on X (illustrated in Figure 1)
showed that in the negative feedback condition, the relation between
the subject’s level of self-esteem and liking for the evaluator became
increasingly negative as the value of the variability of self-esteem vari-
able increased. In the positive feedback condition, the relation between
the subject’s level of self-esteem and liking for the evaluator was not
significant for low or moderate levels of variability of self-esteem, but
was significantly positive at high levels of variability of self-esteem.

Tests of the simple slopes of ¥ on W (illustrated in Figure 2) showed
that in the negative feedback condition, the simple regression of liking
for the evaluator on the variability of the subject’s self-esteem was
not significant for low and moderate (mean) values of level of self-
esteem, but that there was a significant negative relationship when level
of self-esteem was high. In the positive feedback condition, no signifi-
cant relationship between variability of self-esteem and liking for the
evaluator was observed at any of the levels of self-esteem that were
considered.

The post hoc tests of group differences at specified values (see
Table 4[C]) showed that the evaluator in the high feedback group was
significantly better liked at the full range of values of level and vari-
ability of self-esteem that were considered. The graphical presentations
in Figures 1, 2, and 3 further illustrate and highlight different aspects
of these findings. For example, the overall elevation of the set of lines
in Figure 1, Panel B (positive feedback) is greater than that in Figure 1,
Panel A (negative feedback).
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Space limitations do not permit us to illustrate the powerful methods
of detecting model misspecification available in multiple regression.
Curvilinear effects and interactions involving continuous variables can
be detected and the regression model can be respecified to permit tests
of such effects. Signs of problems with the data, such as outliers, or with
the regression model, such as heteroscedasticity (nonconstant variance)
or nonnormality of residuals, can be detected and a variety of corrective
procedures can be used. Both graphical methods and formal statisti-
cal tests are available. These methods are discussed in more detail in
Cook and Weisberg (1994), Hamilton (1992), and Neter, Wasserman,
and Kutner (1989).

CONCLUSION

In this article, we have presented a full set of multiple regression-based
techniques for the analysis of categorical x continuous variable inter-
actions in between-subject designs. We have considered both experi-
mental personality designs and designs involving natural categories and
continuous variables. We have addressed the structuring of regression
equations, choice of coding system, and the importance of centering
continuous variables. We have considered in detail the interpretation
of regression coefficients in each of the coding systems. Finally, we
have considered methods for graphically displaying the results and for
post hoc testing of simple slopes following significant interactions. The
use of the methods outlined in this article provides all of the informa-
tion available from the use of ANOVA with cutpoints, but without the
attendant loss of power and possibility of spurious first-order effects.

Appendix

This appendix shows the algebraic derivation of the meaning of the re-
gression coefficients for weighted effect codes for the three-group case.
The specific values of the weighted effect codes are first substituted
into Equation 2. For Group 1,

Y = (b() + b3) + (b] + bﬁ)X -+ (bz + bg)W + (b5 + b]O)XW
For Group 2,

f’ = (b() + b4) -+ (b1 + b7)X + (b2 + bg)W + (b5 -+ b]])XW
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For Group 3,
= [bg + (—ny/n3)bs + (—ny/n3)by]
+ [b1 + (—ny/n3)bg + (—ny /n3)bq|X
+ [b2 + (—n1/n3)bg + (—ny/n3)bo]W
+ [bs + (—=n1/n3)bio + (—n2/n3)b11 ] XW

The intercept portions of the equations for Group 1 and Group 2 are
I} = by + b3 and I, = by + b4. Thus

by =1 — by, (Al)
and
by =1 — by (A2)
The intercept portion of the equation for Group 3 is
I = by + (—n1/n3)bs + (—nz/n3)bs

Substituting the expressions for b3 and b4 as functions of the Group 1
and Group 2 intercepts into the Group 3 equation we get

I = by + (I} — bo)(—n1/n3) + (I — bo)(—n2/n3)
Solving for by gives us
bo = (mh + mb + n3lz)/(n + ny + n3) (A3)

Thus, by is the weighted average of the intercepts of the three groups.
Equations Al, A2, and A3 thus define b3, b4, and by, respectively, in
terms of the group intercepts. Performing the same series of algebraic
steps on the X slope, W slope, and XW interaction portions of the full
regression equation provides analogous solutions for the rest of the
coefficients in this analysis.
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